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Expectations formation is a core question in economics. In recent years, a strand of literature
in macroeconomics and finance has been collecting empirical regularities using survey data on
subjective forecasts. A common finding in this literature is that forecast errors are predictable using
information within forecasters’ information sets, which is inconsistent with rational expectations.
Most theories proposed to explain this predictability assume that the data-generating process (DGP)
being forecasted is simple, such as an AR1 process with normal shocks, and forecasters know this
DGP. However, despite knowing the DGP, forecasters make predictable errors because of behavioral
biases or cognitive limitations, such as sluggish updating (Bouchaud et al., 2019), representativeness
(Bordalo et al., 2019, 2020a), and imperfect memory (Afrouzi et al., 2023).

In this paper, we take a different approach and argue that recognizing the presence of fat tails
in the underlying DGP is crucial for understanding the properties of subjective forecasts. We
begin by documenting three facts using data on sales growth forecasts by equity analysts: (i) the
relationship between forecast revisions and future forecast errors—the variables used in Coibion and
Gorodnichenko (2015) regressions—is strongly non-linear; (ii) the distribution of the underlying
process has fat tails; and (iii) the conditional expectation of future sales growth is non-linear in
current growth, with mean reversion in the tails. Next, we build a forecasting model that connects
these facts. The key ingredients in our model are that the underlying process is non-Gaussian, but
forecasters fail to recognize this. After showing formally that our model can explain the three facts
we documented in the data, we estimate it and show that it does so quantitatively. Finally, we show
that our framework is consistent with evidence from an online forecasting experiment where the
underlying process is non-Gaussian and that it provides an explanation for non-linearity in the
momentum of stock returns.

Our empirical analysis uses data on analyst forecasts of sales growth from IBES. The advantage
of focusing on sales growth rather than earnings-per-share (as is typically done) is that sales growth
is stationary and provides a larger sample. Using these data, the first and most important fact
that we document is that the relationship between forecast revisions and future forecast errors is
strongly non-linear. In some papers, revisions linearly and positively predict forecast errors, a feature
commonly interpreted as evidence of underreaction (Coibion and Gorodnichenko, 2015; Bouchaud
et al., 2019). In others, revisions linearly and negatively predict forecast errors, which is evidence
of overreaction (Bordalo et al., 2019, 2020a). In our panel of forecasts and realizations of sales
growth, we show that both coexist. For intermediate values of revisions, forecasters underreact to
news (a positive relationship between revisions and errors). For large values of revisions, forecasters
overreact (a negative relationship between revisions and errors). Additionally, we show that this non-
linear relationship between errors and revisions is driven by cross-sectional rather than aggregate
variation, and does not vary with analysts’ forecasting experience. This suggests that our error-
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revision relationship is unlikely to be driven by a slow convergence of learning that can occur with
one short time series (Bianchi et al., 2022; Farmer et al., 2024).

Our second empirical fact is that the distribution of sales growth has fat tails, as in Stanley et al.
(1996). To detect the presence of fat tails, we examine the log-density plots, similar to the literature
on income dynamics (Guvenen et al., 2021). In the bulk of the sales growth distribution, we find
that a Gaussian density, which is quadratic in logs, provides a close approximation. However, in the
top and bottom 10% of the distribution, sales growth has much thicker and longer tails than those of
a normal distribution. Instead, we find that these tails are well-approximated by a power law with a
tail parameter between 2 and 3, thinner than Zipf’s law (Gabaix, 2009). We show that these fat tails
do not arise from heterogeneity in volatility across firms (Wyart and Bouchaud, 2003), consistent
with Moran et al. (2024), and do not arise from time-varying aggregate volatility.

Our third and final motivating fact is that the conditional expectation of future sales growth
given current growth is non-linear. In particular, we find that the relationship between current and
one-year-ahead sales growth is increasing and linear in the bulk of the distribution. However, in the
tails of the distribution, we find that this relationship changes sign, indicating that extreme values of
sales growth tend to mean-revert. As described below, this non-linearity helps inform the exact way
the DGP in our model deviates from that of standard Gaussian models.

In the next part of the paper, we develop a forecasting model that is designed to connect the
above three facts. In the model, the DGP for the forecasting variable contains a persistent and
transitory component, which is common in models of dividend growth (Bansal and Yaron, 2004;
Lettau and Wachter, 2007) and income dynamics (Guvenen et al., 2014). Importantly, we assume
the transitory component is non-Gaussian and follows a power law distribution, a tractable way of
characterizing processes with fat tails (Gabaix, 2009). In contrast, we assume that the persistent
component follows an AR1 process with normal innovations. This assumption is less crucial, but it
is important that the transitory component has thicker tails than the persistent one. Having fat tails
only in the persistent component would not match our third fact: the strong mean reversion in sales
growth.

We show that this model of the DGP is consistent with our second and third facts. The model
generates fat tails by assumption, consistent with our second fact. To show that it generates the non-
linear conditional expectation of future growth conditional on current growth—our third fact—we
leverage a result from empirical Bayes theory known as Tweedie’s formula (Efron, 2012). Although
this expectation cannot be expressed in closed-form due to the non-normality, this result allows us
to characterize it as a function of the (observable) density function of growth. We show that this
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result implies that the expectation of future growth conditional on current growth is locally linear
when the density is locally Gaussian, as in the bulk of the distribution. However, when the density
is locally non-Gaussian, as in the tails, the expectation of future growth conditional on current
growth is no longer linear and is asymptotically decreasing in current growth. Intuitively, very large
realizations of growth are likely due to the transitory component and, hence, are not likely to persist.

Given this model of the DGP that is consistent with our second and third facts, we show that
it can also explain the non-linear relationship between forecast errors and revisions—our first
fact—with a single assumption: agents construct their forecasts ignoring fat tails. Formally, we
assume that agents form forecasts according to the Kalman filter, which would be the rational
expectation in our model if the transitory component followed a normal distribution rather than a
power law. We view the assumption that agents use a simple misspecified model as a natural form of
bounded rationality (as in Fuster et al. 2010 and Gabaix 2019), but do not microfound it. We show
that this assumption is enough to generate overreaction in the tails and underreaction in the bulk.
This is because large revisions are driven by large shocks to current growth, which asymptotically
come from the transitory component of the DGP. While a rational forecaster would recognize that
these extreme shocks are unlikely to persist, our agents that ignore fat tails do not and, therefore,
overreact. However, because our agents are unbiased unconditionally, overreaction in the tails has
to be compensated by underreaction in the bulk, consistent with our first fact.

Next, we assess our model’s ability to replicate our three facts quantitatively. We estimate the
parameters governing the DGP using simulated minimum distance and show that they provide a
close fit to our second and third facts that are specific to the DGP. When we turn to our first fact, we
find that the estimated model generates too much underreaction in the bulk and overreaction in the
tails. This is not surprising, given our model has no additional free parameters that govern belief
formation. Therefore, we enrich our model by assuming that expectations are a weighted average
of the Kalman filter and the rational expectation (as in Fuster et al. 2010 and Gabaix 2019). We
estimate the degree of shrinkage towards the rational expectation, which we numerically compute
using a particle filter (Fernandez-Villaverde and Rubio-Ramirez, 2007), and find that the model
can match our first fact with forecasters placing a 71% weight on the rational expectation and
a 29% weight on the Kalman filter. Having computed the rational expectation, we compare its
accuracy with that of the Kalman filter and find that the gain in accuracy is relatively small, while
also performing worse in small samples due to overfitting. This supports the idea that it would be a
“default” in a model of bounded rationality (Fuster et al., 2010; Gabaix, 2019).

We conclude with two additional tests of our theory that forecasters do not fully recognize
the presence of fat tails. First, we run an online forecasting experiment similar to Afrouzi et al.
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(2023), but where the underlying process has fat tails. The key benefit of this experiment is that it
allows us to test our theory of expectation formation directly by experimentally varying the features
of the data-generating process. When we run the experiment using our estimated DGP, we find
that the relationship between errors and revisions is non-linear, as in our first fact. In contrast,
when forecasters forecast a similar process with no fat tails, we find no evidence of a non-linear
relationship between errors and revisions. These findings provide direct evidence that the non-linear
relationship between errors and revisions in the data is driven by the fat tails of the DGP, which is
the key result of our theory.

Second, we show that our model makes predictions for return momentum (Jegadeesh and Titman,
2011) that are supported by the data. To translate sales growth expectations into returns, we apply
the Campbell (1991) return decomposition with a constant subjective discount rate (as in Bouchaud
et al. 2019 and Nagel and Xu 2019). Our model predicts that the relationship between past and future
returns should be positive in the bulk of the distribution, where underreaction to news is dominant.
In contrast, it predicts mean-reversion of returns in the tails, where agents fail to recognize that the
extreme shocks are not persistent. We find support for this prediction in the universe of smaller
stocks: for these stocks, momentum tends to mean-revert for extreme losers and winners.

Related literature. This paper contributes to the recent and growing literature on expectations
formation in two ways. First, we contribute to the empirical literature that has documented under-
and overreaction across many forecasting variables and horizons. Broadly speaking, this literature
tends to find evidence of underreaction when looking at shorter-term or consensus forecasts (Coibion
and Gorodnichenko, 2015; Bouchaud et al., 2019), and overreaction when looking at longer-term or
individual forecasts (Bordalo et al., 2019, 2020a; Wang, 2021). Relative to this empirical literature,
our contributions are to provide field evidence of both under- and overreaction within the same

forecasting variable and horizon, and lab evidence that the degree of overreaction can vary within a
sample depending on the Pareto tail in the DGP.

Second, we contribute to the literature that proposes models of belief formation that can generate
under- and overreaction, including constant-gain learning (Nagel and Xu, 2019), selective recall
(Bordalo et al., 2020b), and biased perceptions of autocorrelation (Wang, 2021). Most of this
literature works with models in which data-generating processes are Gaussian, implying that
conditional expectations are linear. In contrast, our empirical analyses highlight how this relationship
can be quite non-linear, and we provide a theory that links this non-linearity to the presence of
under- and overreaction within a given process. Our focus on non-Gaussian dynamics is similar to
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Kozlowski et al. (2020), but we focus on forecasters ignoring these dynamics rather than learning.1

With forecasts of a single time series, rational learning can converge relatively slowly (Farmer et al.,
2024), generating an in-sample relationship between errors and revisions even under full rationality
(Singleton, 2021; Bianchi et al., 2022). In contrast, one benefit of having the large cross-section
in our data is that, under fairly mild assumptions, it averages out the portion of the error-revision
predictability that is driven by a short time series. Our assumption that forecasters (partially) ignore
non-Gaussian dynamics is inspired by the literature on bounded rationality, which argues that
economic agents use simplified models to minimize computation costs (Fuster et al., 2010; Gabaix,
2019). However, it is possible that this assumption could be microfounded via Bayesian learning
about the tail parameter of the process.

Three closely related papers are Kwon and Tang (2025), Augenblick et al. (2024), and Graeber
et al. (2025). Kwon and Tang (2025) also provide a model of belief formation with non-Gaussian
dynamics. In their model, news events belong to categories with different power law distributions,
and forecasters have diagnostic expectations, causing them to overreact to news from categories
with fatter tails and underreact to news from categories with thinner tails. This prediction is similar
to our model. An important difference is that this provides a theory of why over- and underreaction
would vary depending on the category from which a realization is drawn, while our model provides
a theory of why over- and underreaction would vary even within a category. Augenblick et al. (2024)
propose a model in which forecasters incorrectly perceive signal quality and shrink it to a default,
which leads to overreaction to weak signals and underreaction to strong ones. As we discuss in
the paper, our model could be interpreted in this way. Given our model of the DGP, past growth is
a much stronger predictor of future growth in the bulk of the distribution rather than in the tails.
Our forecasters do not fully realize this, causing them to underreact to strong signals and overreact
to weak signals.2 Finally, Graeber et al. (2025) analyze the S-shaped relationship between returns
and earnings surprises, which loosely map into revisions and forecast errors. In their theory, the
strong sensitivity between returns and surprises around zero comes from overreaction that occurs at
a category boundary, while the lower sensitivity away from zero comes from dampening within a
category due to noisy perceptions. Our main fact—underreaction in the bulk and overreaction in the
tails—points to a different mechanism in our setting.

Through our model of the DGP with fat tails, we connect the expectations formation literature
with the literature on power laws. The omnipresence of power laws (Gabaix, 2009) suggests that
the misperception of fat tails that we document is likely important for understanding subjective

1See Dew-Becker et al. (2024) for a characterization of Bayesian learning with arbitrary non-Gaussian dynamics.
2Ba et al. (2024) provide an alternative model that generates overreaction to strong and underreaction to weak

signals, but also generates overreaction in more complex environments.
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forecasts in other settings. The facts that we document about the data-generating process of sales
growth are consistent with the literature on firm dynamics. Our second fact that sales growth (rather
than its level) has fat tails was first documented by Stanley et al. (1996) and recently emphasized by
Boar et al. (2025).3 Our third fact is consistent with Jaimovich et al. (2025), who find that revenue
is more persistent in the bulk of the distribution than in the tails and exhibits fat tails. Also related
is the literature on income dynamics, which emphasizes deviations from the canonical income
processes with Gaussian shocks (Guvenen et al., 2014, 2021). However, this literature on income
dynamics emphasizes the importance of non-normal persistent shocks, while the key ingredient in
our model is non-normal transitory shocks.4

Outline. Section 1 describes our data source, variable construction, and sample selection. Sec-
tion 2 documents our three main facts. Section 3 lays out the simple framework we build to connect
and explain these facts. Section 4 estimates our model and shows that it quantitatively explains
these facts. Section 5 provides additional tests of our model from an online forecasting experiment
and data on stock returns.

1 Data, Variable Construction, and Sample Selection

1.1 Data Source

Our analysis primarily relies on a large annual panel of analyst forecasts for yearly revenues at
one and two-year horizons. We obtain these forecasts from IBES Adjusted Summary Statistics
files, which provide data for both U.S. and international firms. The summary statistics files contain
“current” estimates as of the third Wednesday of each month. We extract mean forecasts reported
in the third month of each fiscal year t+ 1, after fiscal year t earnings have been announced. The
forecasts we use correspond to two horizons: fiscal years t+1 and t+2. The resulting panel covers
the period 2000-2023, and includes both U.S. and foreign firms.

We focus on revenue (i.e., sales) forecasts rather than earnings-per-share (EPS) forecasts for
several reasons. First, revenues are consistently positive, making past realized revenues a natural
normalization base (some normalization is needed to ensure stationarity). Revenue growth forecasts
exhibit a well-behaved distribution with minimal outliers—a crucial attribute given our emphasis

3Our finding that the heavy tails of the growth distribution cannot be explained by a mixture of Gaussian distribution
with heterogeneous variances is also consistent with Moran et al. (2024).

4Another difference is that our focus is primarily on generating the kurtosis in the data rather than skewness. The
latter is a pervasive feature of income data due to extreme negative events like job loss.
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on distribution tails. Second, revenues are not reported on a per-share basis, eliminating the
confounding effects of unexpected stock splits that can generate substantial jumps in EPS or forecast
errors unrelated to the focus of this paper. Finally, the distribution of EPS-to-price ratios—a
common normalization for most studies—is notably non-normal with a characteristic bulge above
zero, whereas the log sales growth distribution demonstrates smooth, well-behaved properties.

In our robustness checks, we also examine individual analyst forecasts and EPS forecasts (nor-
malized by price). Similar to our revenue data, we extract these at annual horizons in the third
month of the fiscal year.

1.2 Definition of Forecasting Variable: Sales Growth

We start with the definition of sales growth, which is our forecasting variable of interest. We
denote sales of firm i at date t as Rit. These data are from the IBES actual files, which ensures
comparability with analyst forecasts (described below). We then denote raw log sales growth by

Git = logRit − logRit−1.

Our main analysis works with adjusted sales growth for two reasons. First, this adjustment makes
different firms comparable with one another, which makes it easier to fit a single data-generating
process on the whole cross-section of firms (we do this in Section 4). Second, as discussed in Wyart
and Bouchaud (2003), the thick tail of the growth distribution may mechanically emerge from the
combination of normal processes interacted with heterogeneous variances. Our adjustment takes
care of these two issues, but we will later explore robustness. Formally, for each firm i, denote Ti as
the number of years for which we have a growth observation and µi =

1
Ti

∑
t Git as the empirical

average of growth observations for firm i. Additionally, denote σi =
1
Ti

∑
t |Git − µi| as the mean

absolute deviation, an estimate of the standard deviation of growth at the firm level. The advantage
of this measure is that it is less sensitive to outliers than variance, because it has no squared term.
We then define adjusted growth as:

git =
Git − µi

σi

.

1.3 Definitions of Forecast Errors and Revisions

For each firm i and each year t, we denote FtRit+1 the forecast made in year t for the future
realization of sales Rit+1, where FtRit+1 is obtained from IBES summary files as the mean consensus
forecast extracted in the third month after the end of fiscal year t. Similarly, the two-year ahead
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forecast Ft−1Rit+1 is measured three months after the end of fiscal year t− 1.

Our key variable of interest in this paper is the forecast of log sales growth. We construct the
h-year ahead forecast of raw sales growth as

FtGit+h = logFtRit+h − logFtRit+h−1,

where FtRit = Rit. The h-year forecast of adjusted sales growth is then

Ftgit+h =
1

σi

(logFtGit+h − µi) .

We focus on h = 1 and h = 2 for one- and two-year ahead forecasts. Note that the way we translate
from forecasts of raw to adjusted sales growth implicitly ignores a Jensen’s inequality term because
logFtGit+h ̸= Ft logGit+h. We ignore this adjustment for simplicity, but it does not materially
affect our analysis. First, on a theoretical level, a constant Jensen’s term would simply shift the
unconditional level of forecasts, while our analysis focuses on the conditional properties of forecast
errors. Second, we show that our empirical results are robust to using percent (instead of log)
growth.

Using these definitions, we then construct forecast errors and revisions following the literature on
expectations formation (Coibion and Gorodnichenko, 2015; Bouchaud et al., 2019). In particular,
raw and adjusted forecast errors are defined as

ERRtGit+1 = Git+1 − FtGit+1, ERRtgit+1 = git+1 − Ftgit+1,

while raw and normalized forecast revisions are defined as

RtGit+1 = FtGit+1 − Ft−1Git+1, Rtgit+1 = Ftgit+1 − Ft−1git+1.

1.4 Sample Selection and Summary Statistics

The sample in our analysis consists of the entire international IBES summary file, subject to
several sample restrictions. First, we focus on firms for which at least 10 realizations of sales growth
are observed (i.e., Ti ≥ 10). Second, we focus on years for which sales forecasts are sufficiently
well-populated, which is from 2000 to 2023. We end up with 122,395 observations. We then trim
the top and bottom 1% of all of our variables. This trimming procedure does not materially affect
our results, but discards extreme outliers which would compress our plot axes.
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Figure 1: Number of observations in our sample
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Notes: This figure shows the total number of observations in our data for which we have a non-missing (adjusted)
growth and one-year forecast.

Figure 1 shows the total number of observations in our data for which we have a non-missing
growth and one-year forecast. As early as 2000, there are already 1,700 such observations (1,000
international and 700 in the U.S.). Then, the number of firms grows to about 3,700 internationally
and 2,200 in the U.S. Overall, sales growth is well covered by IBES after 2000.

Table 1 shows summary statistics for our main variables of interest. The standard deviation of
raw log sales growth is 17 ppt, and the mean is 6%. Normalized growth has a mean and median
closer to zero, and a standard deviation of 1.20—it is not exactly equal to 1 because we normalize
by the mean absolute deviation, not the firm-level standard deviation. Forecast errors have less
variance than growth itself, consistent with the idea that forecasts contain some information about
future growth. Figure A.1 provides suggestive evidence that the distribution of forecast errors has
thicker tails than a Gaussian fit.

2 Motivating Facts

In this section, we document the three key facts that motivate the model of expectations formation
that we develop in Section 3. In the main body of the paper, we present these facts using normalized
log sales growth, git, but discuss a series of robustness checks and report their results in the
Appendix.
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Table 1: Summary Statistics

Variable Mean P25 Median P75 SD # of Obs.

Panel A: Full Sample
Log sales growth (raw) 0.06 -0.02 0.06 0.14 0.17 108,706
Growth forecast error (raw) -0.01 -0.05 -0.00 0.05 0.13 108,694
Growth forecast revision (raw) -0.01 -0.04 -0.00 0.03 0.11 105,609
Log sales growth (normalized) 0.00 -0.70 0.01 0.72 1.20 108,706
Growth forecast error (normalized) -0.06 -0.52 -0.02 0.45 0.96 108,694
Growth forecast revision (normalized) -0.04 -0.39 -0.03 0.32 0.80 105,609

Panel B: US Firms
Log sales growth (raw) 0.06 -0.02 0.05 0.13 0.17 64,881
Growth forecast error (raw) -0.01 -0.06 -0.00 0.05 0.13 64,686
Growth forecast revision (raw) -0.00 -0.04 -0.00 0.03 0.10 63,892
Log sales growth (normalized) 0.01 -0.70 0.02 0.73 1.20 64,727
Growth forecast error (normalized) -0.07 -0.59 -0.04 0.47 1.01 64,569
Growth forecast revision (normalized) -0.02 -0.36 -0.01 0.34 0.79 63,716

Panel C: Non-US Firms
Log sales growth (raw) 0.07 -0.01 0.06 0.15 0.18 43,825
Growth forecast error (raw) -0.01 -0.05 -0.00 0.05 0.12 44,008
Growth forecast revision (raw) -0.01 -0.05 -0.01 0.03 0.12 41,717
Log sales growth (normalized) -0.00 -0.70 -0.01 0.72 1.20 43,979
Growth forecast error (normalized) -0.03 -0.43 -0.01 0.41 0.88 44,125
Growth forecast revision (normalized) -0.07 -0.43 -0.05 0.30 0.81 41,893

Notes Source: IBES summary files. Raw growth corresponds to unadjusted log growth (Git in the main text). Adjusted
growth subtracts the firm-level mean and divides by the mean absolute distance (git in the main text). All variables are
trimmed at the bottom and top 1%.

2.1 Fact #1: Non-Linear Relationship Between Forecast Errors and Revisions

Our first and central empirical fact is based on a regression of forecast errors on forecast revisions.
This regression was introduced by Coibion and Gorodnichenko (2015) (CG) and takes the following
form:

ERRtYit+1 = α + βRtYit+1 + eit+1 (1)

for any forecasting variable Yit. This regression is useful because its slope coefficient can be
used to distinguish between different models of expectations formation, requiring only panel data
on expectations. Full-information rational expectations predicts β = 0 for consensus forecasts,
while limited-information rational expectations predicts β = 0 for individual forecasts. When this
regression is run using consensus forecasts, β > 0 is typically interpreted as evidence of information
frictions, as in models of sticky or noisy information (Coibion and Gorodnichenko, 2015). However,
with individual forecasts, β > 0 is interpreted as non-Bayesian underreaction (Bouchaud et al.,
2019), while β < 0 is interpreted as overreaction (Bordalo et al., 2020a). A key feature of prior
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literature is that it restricts analysis to linear functional forms, as in equation (1). While this is a
natural starting point, especially in settings with small sample sizes, in this section we use our large
sample of sales expectations to provide evidence that this relationship is non-linear.

Figure 2 provides preliminary evidence that, for Y = git, the relationship between forecast errors
and revisions is non-linear. Panel A shows a binned scatterplot of forecast errors, ERRtgit+1, as a
function of revisions Rtgit+1, using 100 bins. This plot provides evidence of significant non-linearity.
Panels B, C, and D show the same plot separately for observations in the 10-90th, 0-10th, and
90-100th percentiles of revisions. For revisions in the bulk of the distribution, Panel B shows that
errors are increasing in revisions, consistent with forecasters underreacting to news that causes
moderately-sized revisions in forecasts. This finding is not novel to our paper: it is consistent
with the underreaction in analysts’ EPS forecasts for US firms (Bouchaud et al., 2019), as well as
managers’ revenue forecasts in the US and Italy (Ma et al., 2020).

Panels C and D of Figure 2 show that for large (positive or negative) revisions, the positive
relationship between forecast errors and revisions reverses and becomes negative: large positive
(negative) forecast revisions are predictive of negative (positive) future forecast errors. Unlike the
relationship in the bulk of the distribution, which is consistent with underreaction, this finding is
consistent with overreaction. In other words, forecasters appear to overreact in response to news
that generates large revisions, while underreacting to more moderate news.

Figure 3 provides sharper statistical evidence of the non-linear relationship between forecast
errors and revisions shown in Figure 2. In particular, we report the slope coefficient from estimating
the CG error-revision regression on eight different subsamples based on different percentiles of
revisions shown on the horizontal axis. In each of these regressions, we double-cluster error terms
at the year and firm levels. The results in Figure 3 confirm the findings in Figure 2: between the
20th and 80th percentiles of revisions, errors are a significantly increasing function of revisions. In
contrast, outside of these bounds in the tails of the distribution of revisions, errors are negatively

correlated with revisions.

Robustness. The non-linear relationship between errors and revisions that we document is robust
to a battery of robustness checks. First, while our adjustments from raw to normalized (log)
growth are done to adjust for heterogeneous variances, it could be that this adjustment mechanically
generates mean reversion. We show in Figure A.2 that this is not the case: raw (log) growth displays
the same non-linear pattern. Second, working with the natural logarithm of growth has the property
of somewhat compressing the tails of the distribution. However, Figure A.3 shows that percent
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Figure 2: Non-Linear Relationship Between Forecast Errors and Revisions
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Notes: This figure shows binned scatterplots of forecast errors on forecast revisions for normalized log sales growth.
See definitions of raw and normalized growth in Section 1. Panel A shows the results for the entire sample; Panel B
restricts the sample to the 10-90th percentiles of revisions; Panel C restricts the sample to below the 10th percentile of
revisions; Panel D restricts the sample to above the 90th percentile of revisions. Vertical bars represent 95% confidence
intervals, assuming the relationship is piecewise linear and continuous (option “ci(1 1)” in stata command “binsreg”).

growth exhibits the same non-linear relationship between errors and revisions. Third, we attempt to
control for aggregate shocks by making a different adjustment to growth. Each year, we compute
the cross-sectional mean absolute deviation of raw log growth (from that year’s mean log growth)
as a measure of aggregate dispersion. We then divide raw error and raw revision by this measure
of dispersion. Figure A.4 shows that, after such adjustment for time-varying aggregate volatility,
the non-linear relationship between errors and revisions is still very strong. Fourth, because we
seek to maximize the size of our sample, our data include non-US firms and therefore somewhat
differ from most existing research. We show in Figure A.5 that the non-linear pattern is clearly
present both in US and international firms separately. Fifth, forecasting noise has been suggested
as a potential source of downward bias in the CG coefficient (de Silva and Thesmar, 2024). To
assess the importance of noise, Figure A.6 reimplements the exercise on individual analyst forecasts,
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Figure 3: Error-Revision Regression Coefficient by Percentiles of Revisions
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Notes: In this figure, we report the estimates of β in the following regression:

ERRtgit+1 = α+ βRtgit+1 + ϵit+1

where git is the normalized log sales growth rate defined in Section 1. This regression is run on eight different
subsamples, whose ranges are described in the x-axis of this chart. These subsamples correspond to the tails and the
bulk of the distribution of revisions. The point estimate of β is the solid black line, while the dashed lines correspond to
the 95% confidence interval based on standard errors that are double-clustered by firm and year.

which likely contain more noise than the consensus. Consistent with the presence of noise, we find
the intermediate positive slope is smaller and the tail negative slopes are more negative. However,
the non-linear relationship between errors and revisions is still very strong, suggesting that noise is
unlikely to explain our main fact.

Part of the literature on expectation formation has emphasized that rational learning can occur
slowly (Farmer et al., 2024), which can generate a correlation between errors and revisions in short
time series that may not be present out of sample (Bianchi et al., 2022). Our use of cross-sectional
variation alleviates this concern to the extent that our results are driven by firm-specific variation,
but not if they are driven by aggregate variation. Figure A.7 shows that our results are indeed driven
by the former: our results are unchanged after absorbing aggregate shocks with time fixed effects.
Additionally, we directly test whether learning drives the non-linear error revision relationship by
splitting our sample into four quartiles of analyst experience, measured by the number of firms
followed by each analyst up to the current year. Figure A.8 shows that the non-linear pattern is
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quantitatively similar in all quartiles. This finding suggests that learning is not a first-order driver of
our results, which is likely driven by our use of extensive cross-sectional variation.

Finally, while the present paper focuses on sales growth because of its empirically convenient
properties, most of the literature on analyst forecasts analyzes EPS forecasts. In Figure A.9 we
show that raw EPS forecasts exhibit the same type of non-linearity, albeit slightly less pronounced
(it is also present in Bouchaud et al. 2019).5

Overall, the evidence on forecast errors and revisions points towards a different treatment of
large versus smaller shocks. Such evidence is hard to square with established models of expectation
formation, which feature linear DGPs (typically, AR1 models) and linear expectations models. We
will deviate from the existing literature in allowing for fat tails in the growth process. To guide our
theory, we first document two additional facts on the fat tails of firm dynamics.

2.2 Fact #2: Fat Tails in Distribution of Sales Growth

Our second fact is that the distribution of sales growth has fat tails, which informs the specification
of the data-generating process in our model. It is well known that many financial and economic
variables have tails that are fatter than a normal distribution Gabaix (2009). For example, the
distribution of firm sizes follows a Pareto distribution with a tail coefficient of one (Axtell, 2001),
which is known as Zipf’s law, and the distribution of growth rates in COMPUSTAT follows a
Laplace distribution, which has fatter tails than a normal distribution (Stanley et al., 1996; Bottazzi
and Secchi, 2006).

Figure 4 examines the tails of log normalized growth, git, in our sample. Panel A shows a classic
plot in the literature on power laws: a plot of log rank against log |git| in the tail of the distribution,
where each point corresponds to an observation (Gabaix, 2009). In this plot, we focus on the top
10% of observations of absolute growth |git|, and exclude the top 1%. The plot also shows the OLS
regression line, which has a slope of -2.7. The fact that the relationship between these two variables
is approximately linear shows that in the top decile of the distribution, the density function of git is
well approximated by a power law of tail coefficient 2.7 (it has a variance but no kurtosis).

Another way to illustrate the fat tails in the distribution of sales growth is shown in Panel B of
Figure 4. This plot shows the log of the probability density function of git for the entire distribution.
We compute this density by first grouping observations into centiles of sales growth. For each
centile, we then compute the average growth, which is shown on the x-axis. On the y-axis, we

5To normalize EPS, we use the standard practice of dividing by a common lagged value of stock price, as in de Silva
and Thesmar (2024).
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Figure 4: CDF and PDF of Sales Growth Distribution
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Notes: Panel A of this figure shows a scatterplot of log rank of |git| against log |git|. We restrict ourselves to the top
decile of absolute growth and remove the top one percent. The panel reports the slope of the regression of log rank on
log growth estimated by OLS. Panel B shows the log density of git computed as follows. For each centile, we estimate
density as the log of the number of observations in the centile divided by its range. The dashed line is a quadratic fit on
the centiles between the 10th and 90th centiles. The two dashed vertical lines correspond to the cutoff values of the top
and bottom decile of the distribution.

calculate the density as the difference between the log frequency in the centile (equal to 1/100) and
the log range of the centile, normalized by the overall range of growth in the sample.

As a point of comparison, Panel B also shows the fit of a quadratic approximation between the
10th and 90th percentiles of the distribution. In particular, for centile c ∈ [10; 90], we estimate the
following relationship:

log h(gc) = α− 1

Σ2

g2c
2

+ ϵc

where gc is the mean growth of centile c and log h(gc) is the corresponding log density. In the
dataset made up of these 80 centiles, the R2 of this regression is 0.98, indicating the fit is quite good
in the bulk of the distribution. If the distribution of sales growth was Gaussian, its log-PDF would
be well approximated by a quadratic function for the entire distribution. However, in the top and
bottom decile, the log density is much larger than predicted by the quadratic fit, illustrating the
presence of non-Gaussian fat tails.

Robustness. In the Appendix, we examine the robustness of our second fact in several ways.
First, in Figure A.10, we check that the fat tails are not driven by our use of normalized log growth.
As expected, we find that this is not the case: in the absence of adjustment, the asymptotic tail
coefficient is estimated to be 2, lower than the 2.7 obtained after adjustment. This is consistent
with the idea that part of the tail thickness in raw log growth comes from heterogeneous variances.
Second, in Figure A.11, we look at percent growth instead of raw growth. We find that percent
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growth has thinner tails with an estimated tail coefficient of 3.5, but is still far from being well
approximated by a Gaussian distribution. Finally, Figure A.12 shows log growth rates adjusted for
time variation in mean growth and mean absolute distance in the cross-section. This attempts to
correct aggregate changes in mean and volatility of growth. We find that the tails of this distribution
are still very thick, with a tail coefficient of 2.5.

2.3 Fact #3: Non-Linear Conditional Expectation

The third and final fact that informs the specification of the data-generating process in our model
is that the conditional expectation of current growth is non-linear in past growth. To illustrate
this point, Panel A of Figure 5 shows a binned scatter plot of git versus git−1. As is evident from
the figure, the conditional expectation of git conditional on git−1 exhibits significant non-linearity
reminiscent of the non-linearity in the relationship between forecast errors and revisions in Figure 2.

Panels B, C, and D of Figure 5 zoom in on the three parts of the distribution of past growth. These
panels illustrate how git is approximately linearly increasing in git−1 in the bulk of the distribution,
while it is decreasing in git−1 in the tails of the distribution.6 In Figure A.15, we provide statistical
evidence of non-linearity analogous to Figure 3 by splitting the sample of past growth into 8
quantiles, and then, within each quantile, regressing git on git−1 (as with revisions we double-cluster
at the firm and year level). We find the slope is significantly positive in the bulk and significantly
negative in the tails of past growth. Put differently, growth appears to be persistent for intermediate
levels of past growth, but mean-reverting in the tails. This is consistent with Jaimovich et al. (2025),
who find that revenue is more persistent in the bulk of the distribution than in the tails and exhibits
fat tails.

3 Model and Theoretical Results

In this section, we develop a parsimonious model that ties the non-linear relationship between
forecast errors and revisions, our Fact #1, to Facts #2 and #3, which are about the data-generating
process. We start by describing a model of the DGP that is consistent with our latter two facts, and
then turn to a model of belief formation that, given this model of the DGP, generates the first fact.

6In Figure A.13 and Figure A.14, we show that this same non-linearity is present for raw log growth, as well as
percent growth.
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Figure 5: Non-Linear Relationship Between Current and Past Growth
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Notes: This figure shows binned scatterplots of current growth on past growth for normalized log sales growth. Panel A
shows the results for the entire sample; Panel B restricts the sample to the 10-90th percentiles of past growth; Panel C
restricts the sample to below the 10th percentile of past growth; Panel D restricts the sample to above the 90th percentile
of past growth.

3.1 Data-Generating Process

The first piece of the model is the data-generating process (DGP) for adjusted log growth, gt,
our forecasting variable of interest. Since this has already been adjusted, our model does not have
any firm-specific heterogeneity, and we therefore omit the firm index i for brevity. Without loss of
generality, we normalize the unconditional mean of gt to zero. We then assume that the DGP for gt
takes the following form

gt+1 = g∗t+1 + σϵϵt+1, ϵt ∼ f(·), (2)

g∗t+1 = ρg∗t + σuut+1, ut ∼ N(0, 1), (3)
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where ut+1 and ϵt+1 are IID shocks with a unit variance. The DGP for gt therefore consists of two
components: (i) a persistent component, g∗t , that follows an AR1 process with normal shocks, and
(ii) a transitory shock, ϵt, with PDF f(·). Throughout, we assume that g∗t is an unobservable latent
state. We denote its unconditional variance by σ2

g∗ =
σ2
u

1−ρ2
, and denote its (normal) PDF by ϕg∗(·).

We also denote the marginal PDF of gt by h(·), which is given by:

h(g) =

∫ +∞

−∞
ϕg∗(g − ϵ)f(ϵ)dϵ.

and denote σ2
g = σ2

ϵ + σ2
g∗ its unconditional variance.

At this point, if we assumed that ϵt was Gaussian, our model of sales growth would be identical
to the models of dividend growth in Bansal and Yaron (2004) and Lettau and Wachter (2007).
However, unlike these models and existing literature on belief formation, we instead assume the
PDF of ϵt, f(·), has heavy tails in the sense that it is well approximated by a power law with tail
parameter ν for large values of ϵt. Formally, we assume that:

f(ϵ) ∝ ϵ−ν as |ϵ| −→ ∞, ν > 2. (4)

Additionally, we assume throughout that f(·) is symmetric.

3.2 Replicating Facts #2 and #3: Fat Tails and Non-Linear E(gt+1|gt)

Before turning to our model of beliefs, we show that our model of the DGP can generate our
second and third facts. Our second fact follows from the properties of power laws: the tail parameter
of a sum of two independent random variables is the minimum of the tail parameters (Jessen
and Mikosch, 2006). Given that gt is the sum of a normal random variable, g∗t , and a fat-tailed
component, ϵt, its tail parameter will be the same as that of ϵt, which we denoted by ν.

Showing our model replicates our third fact—the non-linearity in E(gt+1|gt)—is more difficult
because there is no closed-form expression for E(gt+1|gt). Nevertheless, the following proposition
leverages a result from empirical Bayes theory known as Tweedie’s formula (Efron, 2012) to
characterize it.

Proposition 1 (Tweedie’s formula). The expectation of future growth conditional on current growth

takes the following form:

E(gt+1|gt) = −ρσ2
g∗

d

dg
log h(gt). (5)

In particular, it is a function of the observable distribution of growth, gt.
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Proof. See Appendix B.1.

Proposition 1 shows that E(gt+1|gt) is a function of h(·), the marginal PDF of gt. This result is
useful because h(·) is observable, which means we can characterize the shape of E(gt+1|gt) even
without a closed-form. Recall from Panel B of Figure 4 that the growth distribution is approximately
Gaussian in the bulk of the distribution: log h(g) ≈ − g2

2Σ2 + constant. Given this approximation,
Proposition 1 implies

E(gt+1|gt) ≈ ρ
σ2
g∗

Σ2
gt, (6)

which is linear in gt. This is consistent with Panel B of Figure 5: in the bulk of the distribution, the
expectation of gt+1 is linearly increasing in gt.

The intuition for (6) is that, in the bulk of the distribution, gt is dominated by g∗t . Since g∗t

is persistent, gt is then a good approximation of gt+1. Note that if gt were globally Gaussian,
then this equation would hold with equality, and we would recover the well-known result that the
rational expectation given a signal of a state with additive Gaussian noise is linear. The benefit of
Proposition 1 is that it allows us to extend this result to distributions that are locally Gaussian.

Outside of the bulk of the distribution, Panel A of Figure 4 shows that the growth distribution is
well approximated by a power law in the tails, consistent with (4). Combining (4) with Proposition 1,
we obtain the following corollary.

Corollary 1. Given the assumption on f(·) in (4), Proposition 1 implies

lim
|gt|→∞

E(gt+1|gt) = ρσ2
g∗
ν

gt
. (7)

Proof. See Appendix B.2.

Corollary 1 shows that, in the tails of the growth distribution, the expectation of gt+1 is decreasing

in gt, unlike in the bulk of the distribution. The intuition for why the conditional expectation is
decreasing in gt is that extreme values of gt are likely driven by ϵt. However, because ϵt is not
persistent, this value of gt is unlikely to persist at t+ 1. In the limit as gt →∞, gt reflects ϵt with
probability one, and E(gt+1|gt) converges to the unconditional expectation of zero.7 In sum, (6)
and (7) show that our model of the DGP can replicate our third fact.

7A related result is developed in Chambers and Healy (2011), who show that when a distribution has sufficiently fat
tails such that MLRP does not hold, a positive signal may generate a negative update about the underlying parameter.
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Our specification of the DGP is reminiscent of the recent literature on income dynamics (Gu-
venen et al., 2014, 2021), which models income processes as the sum of persistent and transitory
components. The key difference is that fat tails in those models typically come from persistent
shocks, unlike our model in which they are transitory. While a model in which ut had fat tails and ϵt

was Gaussian could replicate our second fact, Proposition 1 shows that it would be inconsistent with
our third fact. As in our current model, extremely large values of gt would come from the fat-tailed
component of the process with probability one. However, if the fat-tailed component was persistent,
this would imply that the conditional expectation of gt+1 given gt would be increasing in gt, which
is inconsistent with Figure 5.

3.3 Expectations Formation

Given our model of the DGP, we now describe our model of subjective expectation formation. We
assume that expectations do not have “full-information,” in the sense that forecasters only observe
realizations of gt but not g∗t . However, this assumption alone cannot explain our first fact, given it
would imply that forecast errors should not be predictable by revisions, which are in forecasters’
information set. Therefore, we also assume that forecasts are not rational given this information set.
In particular, our core assumption is that forecasters incorrectly perceive the distribution of ϵt to be
Gaussian such that (4) does not hold. We do not microfound this misperception, but we view it as
consistent with the idea that economic agents use simplified, or “sparse”, models of reality to form
their beliefs (Fuster et al., 2010; Gabaix, 2019). Because of this model misspecification, forecast
errors will be (conditionally) predictable.

Since only past values of gt are observable, agents have to solve a filtering problem to compute
their expectations about g∗t given g0, ..., gt, which they in turn use to forecast future growth. Under
the assumption that agents perceive ϵt as being Gaussian, the solution to this filtering problem
implies that their expectations will be characterized by the Kalman filter. For our theoretical results,
we assume that agents are in a steady state in the sense that the posterior variance of the Kalman
filter and, hence, the Kalman gain is constant. Denoting this steady-state Kalman gain as K, agents’
expectations at horizon k, Ftgt+k, are characterized by:

Ftgt+k = ρkK
∑
s≥0

(ρ(1−K))k gt−s. (8)
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3.4 Replicating Fact #1: Non-Linear Error-Revision Relationship

We now show that our model of belief formation, combined with our model of the DGP that
replicates Facts #2 and #3, also generates Fact #1.

Proposition 2. Define forecast errors and forecast revisions as follows:

ERRt+1 = gt+1 − Ftgt+1,

REVt = Ftgt+1 − Ft−1gt+1.

Then, forecast errors are asymptotically linear in forecast revisions:

lim
|REVt|→∞

E (ERRt+1 | REVt) = −C ×REVt, (9)

where C > 0.

Proof. See Appendix B.3.

Proposition 2 shows that in the tails of the distribution of revisions, the relationship between
forecast errors and revisions is linear and negative. This is consistent with our first fact in Figure 2:
there is overreaction in the tails of the distribution of revisions. The proof of this result relies on
showing that revisions are driven by changes in gt, which are asymptotically large (in absolute
value) for one of two reasons: (i) a large realization of ϵt or (ii) a large realization of past ϵt−h. The
intuition for why these large revisions reflect overreaction is that the forecaster does not realize
that they are less likely to be persistent because they are driven by the fat-tailed component of the
process, ϵt, which is transitory. If ϵt were Gaussian, there would still be transitory shocks, but the
change in gt would not be informative about the relative size of transitory and persistent shocks. In
contrast, when ϵt is fat-tailed, large values of gt asymptotically only reflect ϵt.

Combining Proposition 2 with the fact that the Kalman filter is unbiased on average, we obtain
the following result.

Corollary 2. There exists an R > 0 such that:

E
(
ERRt+1 ×REVt

∣∣ |REVt| > R
)
< 0

E
(
ERRt+1 ×REVt

∣∣ |REVt| < R
)
> 0

Proof. See Appendix B.4.
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Corollary 2 shows that our model can generate the full non-linearity in Figure 2. While Propo-
sition 2 shows there is overreaction in the tails, Corollary 2 shows that errors and revisions are
positively correlated on average in the bulk of the distribution of revisions. The intuition for why
forecasters undereact in the bulk is similar to the intuition for overreaction in the tails: the forecasters
do not realize that intermediate values of gt, which generate smaller revisions, are more likely to
reflect ut than ϵt, and hence are more likely to be persistent. Note, however, that while Corollary 2
shows that errors and revisions are positively correlated on average in the bulk where |REVt| < R,
we cannot show that this is true for all |REVt| < R without further assumptions about the PDF of
ϵt, f(·). Additionally, we cannot characterize the exact value of R at which the switch between
underreaction and overreaction occurs.

3.5 Connection with Augenblick et al. (2024)

We conclude this section by connecting our mechanism for underreaction and overreaction to
that in Augenblick et al. (2024) (ALT). ALT propose a model in which forecasters incorrectly
perceive signal quality and shrink it to a default, which leads to overreaction to weak signals and
underreaction to strong ones. To illustrate how our model relates to this mechanism, we derive the
following result.

Proposition 3. The variance of future growth conditional on current growth takes the following

form:

var(gt+1|gt) = σ2
g + ρ2σ4

g∗
d2

dg2
log h(gt).

Proof. See Appendix B.5.

Proposition 3 shows that the conditional variance of gt+1 given gt depends on the second derivative
of the log-density of gt. Figure 4 shows that log h(·) is concave in the bulk (Panel B), but convex
in the tails (Panel A). Using Proposition 3, these patterns imply that gt is a more precise signal
of gt+1 for smaller values of past growth, while it is less precise in the tails of the distribution.
Therefore, our model delivers a similar result to ALT: forecasters are underreacting in the parts of
the distribution where signals are strong, and overreacting when signals are weak. This result is also
consistent with the model in Ba et al. (2024) (BBI), which (under parameter restrictions) makes the
same prediction for the relationship between underreaction and overreaction and signal strength as
ALT.8 However, we cannot directly compare our model with those in ALT and BBI because the

8While both models in ALT and BBI make this same prediction, the mechanisms are quite different. This leads
them to make other different predictions, such as how overreaction responds to complexity. See Appendix C of BBI for
additional details.
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informational environments in those models are quite different from our time-series forecasting
setting that has a continuum of states.

4 Quantitative Model Results

This section assesses whether the model in Section 3 can quantitatively account for our three
main empirical facts.

4.1 Simulation Details

The model that we take to the data is the same model described in Section 3 with two changes.
First, we assume that ϵt is distributed according to a t-distribution with ν > 2 degrees of freedom
normalized to have a unit variance. The t-distribution is asymptotically a power law with tail
parameter ν, and has the nice property of converging to a normal distribution as ν −→∞. Second,
we relax the assumption that the Kalman filter updating equations are applied using a constant
Kalman gain, which would only apply in a steady state. Instead, we use the following updating
equations to compute subjective forecasts, which follow from applying standard Kalman filter
results to equations (2) and (3) under the (incorrect) assumption that ϵt ∼ N(0, 1):

Ftgt+h = ρhFtg
∗
t , (10)

Ftg
∗
t = (1−Kt)Ft−1g

∗
t +Ktgt,

Kt =
Σt

Σt + σ2
ϵ

,

Σt+1 = ρ2 (1−Kt) Σt + σ2
u.

In our simulations, we sample time series of gt according to equations (2) and (3) with 100,000
observations. We repeat this simulation 100 times, where g∗0 is drawn from its stationary distribution,
the length of the simulation burn-in period is 50 observations for each series, and the initial
conditions are F0g

∗
0 = g∗0 and Σ0 = 0. This gives us a total of 10 million simulated observations.9

4.2 Estimating Parameters of the DGP

We start by estimating the four parameters of the DGP for gt in (2) and (3): ρ, the persistence of
g∗t , σϵ, the scale parameter for ϵt, ν, the tail parameter of ϵ, and the innovation volatility, σu. We

9We choose this simulation size to be as large as possible without exceeding the RAM of our GPU. The simulation
itself is not memory or computationally intensive—these constraints only become binding when we compute the rational
expectation using a particle filter described below.
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Table 2: Simulated Minimum Distance Parameter Estimates

ρ σu σϵ ν λ

Estimate 0.529 0.631 1.325 2.533 0.290
Std. Error 0.041 0.038 0.100 0.083 0.023

Notes: This table shows the parameter estimates and standard errors from the two-step Simulated Minimum Distance
estimation described in the main text. Standard errors are computed using the covariance matrix of the estimation
moments and the gradient of the moment vector computed using central differencing with a step size equal to 1% of the
estimated parameter value. We adjust our standard error for λ to account for the first step of the estimation using the
procedure in Murphy and Topel (1985).

estimate these parameters using Simulated Minimum Distance (SMD), minimizing the difference
between a set of statistics computed from simulated data in the model and the corresponding value
of those statistics in the data. We use ten statistics to estimate the four parameters, starting with
the slope coefficients from regressing gt+1 on gt for six different subsamples based on percentile
breakpoints of gt: [0; 10], [10; 20], [20; 50], [50; 80], [80; 90], [90; 100]. We then ask the estimated
model to match four additional statistics: (1) the Pareto tail coefficient from Panel A of Figure 4,
(2) the 10-90 percentile difference of gt, (3) the 10-90 percentile difference of gt+1 − gt, and (4)
the 10-90 percentile difference of gt+3 − gt. We use the inverse-diagonal of the sample covariance
matrix as the weighting matrix.10

The idea behind the choice of statistics in our SMD estimation is to capture Facts #2 and #3
in the data. The first six regression slopes capture Fact #3: the non-linearity in the conditional
expectation of gt+1 given gt in Figure 5.11 These regression coefficients jointly identify ρ, σu, and
ν, but they do not separately identify each of these parameters. Therefore, we include a seventh
statistic that captures Fact #2: the Pareto tail coefficient in Figure 4. This moment is useful because
it is only affected by ν and, hence, can be used to separately identify it. The eighth statistic, the
dispersion of gt, helps identify the scale of the DGP, in particular σu and σϵ. We choose to use
the spread between the 10th and 90th percentiles to avoid sensitivity to outliers, which inevitably
occur in a process with fat tails. The final two statistics—the spread between the 10th and 90th
percentiles of one- and three-year changes in gt—are useful for separately identifying ρ and σu.
Without these moments, the estimation has several local minima with different values of ρ and
σu. Including these moments is useful because the extent to which the three-year changes tend to

10Because the SMD objective function depends on four parameters, we need to be careful that we reach a global
rather than a local minimum. We perform this optimization using a two-step procedure in which we first search on a
quasi-random grid of 20,000 points, and then run local Nelder-Mead optimizations using the top 10 points as starting
points. Our result is then the parameter vector that has the lowest objective function from any of these Nelder-Mead
optimizations. We have verified that with our choice of statistics, these local optimizations all converge to similar points.

11Before running these regressions in both the model and the data, consistent with our empirical analysis, we trim
observations at the 1st and 99th percentiles to avoid the influence of extreme outliers.
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Figure 6: Fit of Estimated Model on Data-Generating Process
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Notes: This figure shows the fit of the estimated model on the statistics used to estimate it. The values of the statistics in
the data are shown with 95% confidence intervals. The values in the model are computed from simulations, as described
in Section 4.1, at the set of parameters shown in Table 2.

be larger than one-year changes is directly affected by ρ and no other parameters. Our choice of
one- and three-year changes, specifically, follows the literature on income dynamics, which uses
the same moments to identify persistence and volatility in similar data-generating processes (e.g.,
Guvenen et al., 2014, 2021).

Our SMD estimates are shown in Table 2, and Figure 6 shows the fit of the model on the targeted
statistics at these estimated parameters. The results show that the model is able to fit the data
relatively well. The main dimension on which the model misses is the relationship between gt+1

and gt in the left tail of the distribution of gt. In the data, there is some asymmetric mean reversion
that manifests in a negative slope coefficient in the left tail of the distribution, which the model
cannot generate.

4.3 Estimating the Expectations Formation Model

We now turn to the model’s fit for our first fact. Assuming expectations are formed according to
the Kalman filter in (10), the left panel of Figure 7 shows the slope coefficients from regressing
forecast errors on revisions on six different subsamples based on the same percentile breakpoints
used to characterize our first fact in Figure 6. Consistent with our theoretical results in Section 3.4,
the Kalman filter generates a non-linear relationship between errors and revisions, with positive co-
efficients (i.e., underreaction) for intermediate revisions and negative coefficients (i.e., overreaction)
for large revisions. However, relative to the data, the model generates too much non-linearity: the
error-revision slope is too positive in the bulk of revisions, and too negative in the tails. The fact
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Figure 7: Fit of Estimated Model on Fact #1: Non-Linearity in Error-Revision Relationship
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Notes: This figure shows the fit of the model on the error-revision relationship in the data. The values of the statistics
in the data are shown with 95% confidence intervals, which are repeated from Figure 3. The values in the model are
computed from simulations, as described in Section 4.1, at the set of parameters shown in Table 2. The left panel shows
results when agents form forecasts according to the Kalman filter in (10) or, equivalently, the forecasting equation in
(11) with λ = 1. The right panel shows results when agents form forecasts according to (11) with the estimated value
of λ in Table 2. Before running these regressions in both the model and the data, we trim observations at the 1st and
99th percentiles to avoid the influence of extreme outliers.

that our model cannot fit the data is not surprising given that our model of beliefs has no additional
degrees of freedom, given our estimates of the DGP parameters.

To attenuate the bias of our linear forecasting model, we follow Fuster et al. (2010) and Gabaix
(2019) and assume that expectations are formed by shrinking away from the rational expectation
towards the Kalman filter, which we view as a natural default model:

F λ
t gt+h = λFtgt+h + (1− λ)Etgt+h (11)

where Et is the rational expectation given the full history of gt and λ is the weight that is placed
on the Kalman filter forecast. λ = 1 corresponds to the case in Figure 7, while λ = 0 corresponds
to the case of rational expectations in which error-revision coefficients would always be zero. We
then estimate λ to assess whether the anchored model in (11) can match our first fact quantitatively.
Doing so requires computing the rational expectation, Etgt+1, which we do using the particle
filter from Fernandez-Villaverde and Rubio-Ramirez (2007) (also known as sequential importance
sampling); see Appendix C for a detailed description of this procedure. Having computed the
rational expectation, we estimate λ using SMD with the six error-revision regression coefficients in
Figure 7 as statistics and the inverse-diagonal of the covariance matrix as a weighting matrix.12

12In principle, we could have estimated λ jointly with the DGP parameters. However, this is too computationally-
intensive because it requires rerunning the particle filter for each different set of DGP parameters. Nevertheless, we
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Our estimated value of λ, shown in the last column of Table 2, implies that forecasters place 29%
of their weight on the Kalman filter forecast, and 71% of their weight on the true forecast. The
right panel of Figure 7 shows the fit of the model on the targeted error-revision coefficients using
the parameters in Table 2. The fit is much better than in the left panel, where the model predicts
far too much non-linearity. Now almost all of the error-revision coefficients are within the 95%
confidence intervals of the data. One area where the model misses is that it generates positive rather
than negative coefficients in the 10–20% and 80–90% bins, like in the case of the Kalman filter in
the left panel.

4.4 Accuracy Loss of Kalman Filter

Our assumption that forecasters shrink their forecasts away from the rational expectation toward
a “default” model is consistent with standard formulations of bounded rationality (Fuster et al.,
2010; Gabaix, 2019). However, as with any model of bounded rationality, the key question is where
this default model comes from. This section studies the accuracy loss of the Kalman filter relative to
the rational expectation. While the Kalman filter is simple, a desirable feature for a default model, it
would be a less likely default if it were highly inaccurate.

Panel A of Table A.1 shows the percent loss in mean-squared error (MSE) of the Kalman filter
relative to the rational expectation. At the estimated DGP, the loss in MSE from using the Kalman
filter is approximately 1.2%. Panel B shows the loss in MSE of agents’ forecasts with our estimated
value of λ relative to the rational expectation. This loss is much smaller: at the estimated DGP, the
loss is only around 0.1% of the rational MSE. Therefore, while agents’ anchoring on the Kalman
filter has a significant effect on the extent of over- and underreaction, it has a relatively small effect
on forecast accuracy. The different rows and columns of Table A.1 show that the losses from the
Kalman filter tend to increase with ρ and ν. This occurs because, at low values of ρ, forecasts of
gt+1 depend minimally on the solution to the filtering problem, as g∗t lacks persistence. Conversely,
at high values of ν, f(·) approaches a normal distribution, which implies the Kalman filter offers a
closer approximation to the true solution.

While the Kalman filter has a non-trivial loss relative to the rational expectation, implementing
the latter requires agents to have considerable knowledge about the DGP. This raises the question
of how agents would learn about the presence of fat tails, given the difficulty of detecting them
in finite samples. While integrating learning into the particle filter is computationally intractable,
we consider a simple parametric model of the rational expectation that can be easily extended to
allow for learning, while also providing a close approximation to the particle filter. In particular, we

adjust our standard error for λ to account for the two-step estimation procedure following Murphy and Topel (1985).
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consider the following forecasting rule:13

Ftgt+h = ρhFtg
∗
t , (12)

Ftg
∗
t = (1−Kt)Ft−1g

∗
t +Ktgt,

Kt = K
γ0

1 + exp(|gt − Ft−1gt| − γ1)
,

where K is the steady-state Kalman gain and (γ0, γ1) are parameters. (12) corresponds to a state-
dependent version of the steady-state Kalman filter, where Kt tilts away from the steady-state
Kalman gain.14 When we estimate (γ0, γ1) by minimizing the mean squared difference between
the one-period-ahead forecasts in (12) and the rational expectation in our full sample of simulated
data, we find that this state-dependent filter provides a very close approximation to the particle filter.
Figure A.18 shows that the R2 in a regression is 99.7% and the slope coefficient is nearly one, while
the R2 is only 62.7% for the Kalman filter. Intuitively, the state-dependent filter prevents the Kalman
filter from overreacting to large shocks, which are likely transitory, because lim|gt−Ft−1gt|→∞ Kt = 0.
In contrast, for small shocks with |gt−Ft−1gt| ≈ 0, the state-dependent filter reduces underreaction
by scaling up the Kalman filter because γ0

1+exp(−γ1)
> 1.

Since the parametric forecasting rule in (12) provides a close approximation to the rational
expectation, we next consider how it would compare to the Kalman filter if agents had to learn
(γ0, γ1). We consider a simple model of learning in which agents estimate (γ0, γ1) by minimizing
the MSE of their forecasts on past data. Figure A.19 shows that this forecast requires a significant
period to outperform the Kalman filter. Specifically, the out-of-sample MSE of the Kalman filter
remains lower than that of the state-dependent filter until agents have 100 periods of data to estimate
(γ0, γ1). This echoes the results in Farmer et al. (2024), who show that learning can occur slowly
when the underlying DGP is complex.

In sum, given our DGP, we find that the Kalman filter has a relatively small accuracy loss relative
to the rational expectation in large samples, and is likely to outperform in smaller samples by
limiting overfitting. Coupled with its simplicity, these findings suggest it serves as a reasonable
“default” in a model of bounded rationality.

13We thank Stefan Nagel for suggesting the idea of using a state-dependent Kalman gain.
14We tilt away from the steady-state Kalman gain because Figure A.17 shows that convergence occurs rapidly after

approximately three periods.
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5 Additional Evidence in Support of Model

This section presents two additional pieces of evidence in support of our model. The first comes
from an online forecasting experiment, and the second comes from data on stock returns.

5.1 Evidence from a Forecasting Experiment

Experimental design. The design of our online forecasting experiment is taken from Afrouzi et al.
(2023) (AKLMT). Participants are asked to predict the outcome of a process, and their compensation
depends on the accuracy of their forecasts. We recruit participants on Amazon MTurk, and they are
reasonably representative of the general population. The experiment does not require participants to
have any prior knowledge of statistics, and participants do not know the DGP, although AKLMT
show that this is not important. The interface is graphical and user-friendly: participants click
with their mice to provide their forecasts at one- and two-period-ahead horizons. Prior to making
their first forecast, they see 40 prior realizations of the process, and then sequentially provide both
forecasts in 40 periods, seeing the realization of the process between each period. We refer the
reader to AKLMT for further details about this design; see Figure A.16 for an example of the
interface our participants see for these parameters.

Starting with this design, we set the DGP of the process being forecasted to the following:

gt+1 = g∗t+1 + 12.16ϵt+1, ϵt ∼ t(2.533) (13)

g∗t+1 = 0.529g∗t + 12.62ut+1, ut ∼ N(0, 1) (14)

This DGP corresponds to the one in our model with the estimated values of ρ and ν from Section 4.
We have modified σu and σϵ, which simply scale the DGP, so that the values are larger numbers
that are easier for participants to interpret. We then ran the experiment in two waves with 201
participants on March 17th, 2025 and 202 participants on April 29, 2025. Given that each participant
makes 40 forecasts, our data have 16,120 observations. We compare our results using the DGP in
(13) and (14) with those from a condition in AKLMT in which the process is an AR1 with Gaussian
shocks and persistence parameter of 0.2.15

Before describing the results, we briefly discuss the relative benefits and costs of this experiment
relative to our evidence in Section 2. The main benefit of running an experiment is that it allows us
to directly control the parameters of the DGP. However, this benefit comes with several downsides.

15We use 0.2 because it is the closest experimental condition in AKLMT to the regression coefficient of git+1 and git
in our model estimated in Section 4.
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First, participants in the experiment are fundamentally different from the forecasters in our data,
who are professional equity analysts with incentives aside from accuracy. Second, the professional
forecasters in our data are likely to have a better understanding of the DGP, while we cannot control
the priors of the participants in our experiment. Finally, the environment of forecasting a variable
in our experiment is obviously quite different from forecasting in the real world. Despite these
differences, we still view this experiment as useful because, by comparing our results with those in
AKLMT, we can perform a direct test of our theory’s key prediction that transitory fat-tailed shocks
create a non-linear relationship between errors and revisions.

Experimental results. Panel A of Figure 8 shows the relationship between git+1 and git in the
data from AKLMT, where i is the participant and t is the round of forecasting. As expected, this
relationship is linear. In contrast, Panel C shows the same relationship in our experimental data,
where the DGP is in (13) and (14). Although our experimental data have an order of magnitude
fewer observations than our data on sales growth, these data still replicate this non-linear relationship
in Fact #3.

Panels B and D of Figure 8 provide evidence that, despite the differences in the DGP, participants’
one-period ahead forecasts, Fitgit+1, are still linear in git, unlike the true DGP. This is consistent
with our conjecture that forecasters ignore the fact that large shocks are likely to be transitory.
Comparing Panels A and C with B and D also illustrates that forecasters substantially overestimate
the persistence of the process: E (Fitgit+1 | git) is steeper than E (git+1 | git) at all points. The
combination of this extrapolation and the likely presence of expectation noise (de Silva and Thesmar,
2024) leads to significant overreaction on average: columns (1) and (3) of Table 3 show that the
relationship between forecast errors and revisions is significantly negative in our experiment and in
AKLMT, with a similar magnitude. Given that both processes are not very persistent, this finding is
consistent with the conclusion in AKLMT that overreaction is especially strong for processes that
are less persistent.

Despite the presence of overreaction on average, the fact that E (Fitgit+1 | git) is linear in Panel
D while E (git+1 | git) is non-linear in Panel C provides preliminary evidence that forecasters are
likely to overreact more in the tails of the distribution, consistent with our theory. To test for this
non-linearity, we estimate the following regression on the data in AKLMT and from our experiment:

ERRit+1 = α+βREVit + γLBottom 40% REVit + γHTop 40% REVit+ (15)

βLREVit × Bottom 40% REVit + βHREVit × Top 40% REVit + eit+1
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Figure 8: Data-Generating Process and Forecasts in Experimental Data
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Notes: Panels A and C show binned scatterplots of git+1 versus git in experimental data, where i is the participant and t
the round of forecasting. Panels B and D show binned scatterplots of Fitgit+1 against git. Panels A and B use data from
Afrouzi et al. (2023), where the DGP is a Gaussian AR1 process with a persistence parameter of 0.2. Panels C and D
use the experimental data described in the main text, where the DGP is fitted to our data – see equations (13) and (14).

where Bottom 40% REVit and Top 40% REVit are indicator variables that equal one when revi-
sions are in the bottom or top 40% of the distribution. Our prediction is that the relationship between
errors and revisions is more negative in the tails, so βH and βL should be negative and of similar
magnitudes in our data and should not be statistically different from zero in the AKLMT data.
We choose to split the data into 0-40%, 40-60%, and 60-100% based on visually inspecting the
relationship between forecast errors and revisions in our data. The choice of larger groups in the tail
of the distribution reflects the fact that forecasters overreact on average, as described above, in both
AKLMT and our data. Nevertheless, our qualitative conclusions are robust to alternative splits of
the data.

Columns (2) and (4) of Table 3 show that the results from estimating (15) are consistent with our
theory. For the data from AKLMT, column (2) shows no difference in the amount of overreaction
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Table 3: Non-Linear Relationship Between Forecast Errors and Revisions in Experimental Data

Dependent Variable: Error

Afrouzi et al. (2023) New Experiment
(1) (2) (3) (4)

Revision -0.44*** -0.39 -0.41*** 0.97**
(0.02) (0.41) (0.01) (0.39)

Revision × Bottom 40 % -0.03 -1.46***
(0.42) (0.39)

Revision × Top 40 % -0.11 -1.41***
(0.41) (0.40)

Bottom 40 % -4.49 -2.84
(2.95) (2.48)

Top 40 % -2.53 5.79**
(2.73) (2.36)

Constant -6.62*** -2.84 -8.61*** -10.71***
(1.46) (2.50) (1.33) (2.35)

Number of Observations 6,942 6,942 15,717 15,717
Gaussian AR1 Process ✓ ✓ ✗ ✗

Fat-Tailed Process ✗ ✗ ✓ ✓

Notes: This table shows results from regressions of forecast errors onto revisions. In columns (1) and (2), we use data
from Afrouzi et al. (2023), where the DGP is a Gaussian AR1 process. In columns (3) and (4), we use the experimental
data described in the main text, where the DGP is fitted to our data – see equations (13) and (14). Columns (1) and (3)
just regress errors on revisions. Columns (2) and (4) estimate equation (15). All standard errors are clustered at the
participant level. These regressions have fewer than 16,120 observations because computing forecast revisions loses
one observation per subject.

that is present in the bulk of the distribution and the tails: βL and βH are not statistically different
from zero. In contrast, in our data, column (4) shows that βL and βH are significantly negative
with similar magnitudes, while β is significantly positive. Collectively, these findings provide
direct evidence for our theory’s key prediction that transitory fat-tailed shocks create a non-linear
relationship between errors and revisions.

5.2 Implications for Return Predictability

This section examines and tests the predictions that our model of belief formation makes for
return predictability. We focus on one type of predictability: momentum, the fact that past returns
predict future returns (Jegadeesh and Titman, 2011).

32



Figure 9: Model-Implied Relationship Between Current and Future Returns
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Notes: This figure shows a binned scatterplot of future returns against current returns in our simulated model. Given a
set of earnings growth expectations, we compute returns using (16), as described in Appendix B.6. The three sets of
points on the graph correspond to three cases in which beliefs are set equal to (i) the rational expectation computed with
the particle filter, (ii) the Kalman filter, and (iii) the combination of the former two as in (11) with the value of λ in
Table 2. We conduct this simulation assuming Rf = 1.01, π = 5.5%, c = 0.96, and ρ is set to the estimated value in
Table 2. We set the constant of proportionality between sales and earnings growth such that the standard deviation of
returns is 15%.

Model prediction: non-linearity in momentum. To derive predictions about returns, we make
two simplifying assumptions: (i) earnings growth is a constant fraction of sales growth, and (ii)
the subjective discount rate is constant (as in Bouchaud et al. 2019 and Nagel and Xu 2019),
which is consistent with evidence in De la O and Myers (2021). As shown in Appendix B.6, these
assumptions coupled with the Campbell (1991) decomposition allow us to link returns with changes
in expectations of sales growth gt using the following expression:

log(1 +Rt) ≈ log(1 +Rf + π) + (gt − Ft−1gt) +
∞∑
k=1

ckREVtgt+k, (16)

where Rt is the net return, π is the (constant) ERP, Rf is the gross risk-free rate, c is a linearization
constant, and REVtgt+k denotes investors’ subjective revisions about future growth between t− 1

and t. This expression is intuitive: given that discount rates are fixed, returns are driven by earnings
surprises and revisions of future growth. As detailed in Appendix B.6, we use (16) to generate a
panel of simulated returns based on the simulated panel of realized and expected sales growth from
our estimated model.

Figure 9 shows the prediction that our model makes for momentum by showing a binned
scatterplot of current returns rt against past returns rt−1. The model predicts momentum in the bulk
of past returns, but mean-reversion in the tails. This is consistent with our expectations formation

33



Figure 10: Relationship Between Current and Past Returns in the Data
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Notes: This figure shows binned scatterplots of monthly returns, rt, as a function of past annual returns excluding
month t − 1, rt−12,t−1. There are 100 bins in each panel. Panels A-C use the standard convention of using bins of
past returns rt−12,t−1 as the x-axis. Panel D uses past returns, rt−12,t−1, directly as the x-axis. Panel A uses the entire
CRSP sample of stocks traded on AMEX, NASDAQ and NYSE. Panel B uses only the bottom half of stocks ranked by
12-month lagged market cap. In contrast to Panels A and B, quantiles of returns are defined on the entire sample in
Panels C and D, rather than separately for each month. Dashed lines are 95% confidence bands based on standard errors
assuming that returns are independent.

model, which predicts overreaction to large news, and underreaction to intermediate ones. As the
figure also shows, the predictability is stronger for the more “biased” expectation: Kalman filter
expectations (blue dots) generate the strongest predictability, while forecasts anchored to rational
expectations (red dots) generate weaker predictability. Predictability disappears completely when
forecasts are rational (gray dots) or when ϵ is Gaussian, in which case the Kalman filter is rational.

Non-linearity in momentum in the data. We now examine whether momentum indeed exhibits
mean-reversion in the tails in the data. We use CRSP monthly returns from 1927 to 2023 adjusted for
delisting, and restrict to the sample of firms listed on NYSE, AMEX, and NASDAQ. Our measure
of momentum follows the literature (Jegadeesh and Titman, 2011): every month t, momentum is
the cumulative return between months t− 12 and t− 1 (thereby excluding the last month of past
returns, which exhibit reversals). We define firm size as the market capitalization at t− 12.
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We begin by plotting returns against centiles of momentum that are redefined each month, as in
standard asset pricing tests. Panel A of Figure 10 shows the results for the entire CRSP sample:
the line is upward sloping, consistent with the presence of momentum. However, we also find
that there is a bit of mean-reversion for “super losers”, but not for “extreme winners”. In Panel
B, we show that the non-linearity is more pronounced for smaller firms, which we define as those
with below-median size. This is to be expected, as smaller stocks are more expensive to trade and
therefore display more predictability (Novy-Marx and Velikov, 2016).

In Panel C of Figure 10, we show results when the centiles of past returns are defined on the
entire sample rather than within each month, as we do within our model in Figure 9. While this
is less standard in asset pricing tests because it implies the portfolios are not tradeable, it allows
for the possibility that some of the non-linearity in momentum returns may come from time-series
variation, which is more aligned with our model that does not distinguish between time-series and
cross-sectional variation. Panel C shows that, using fixed centiles and focusing on firms below the
50% size cutoff, the non-linear relationship starts to appear significantly with a quantitative shape
that is remarkably similar to that of our estimated model in Figure 9. The differences relative to
Panel B suggest that the time series of momentum returns generates some mean-reversion in the
tails, consistent with the literature on momentum crashes (Clara and Barroso, 2015): when volatility
is high, losers are more likely to overperform, and winners more likely to underperform. Panel D of
Figure 10 reproduces the analysis of Panel C, except that the x-axis is now rescaled to the average
values of past returns. This last graph is less consistent with the practice of forming portfolios, as
is typically done in asset pricing tests. Nevertheless, there is still significant non-linearity in the
return-momentum relationship, in line with the prediction of our model.

6 Conclusion

In this paper, we argue that recognizing the complexity of the underlying DGP, in particular
its fat tails and non-Gaussian dynamics, is crucial for understanding the properties of subjective
forecasts. We document three facts using data on sales growth forecasts by equity analysts: (i) the
relationship between forecast revisions and future forecast errors—the variables used in Coibion and
Gorodnichenko (2015) regressions—is strongly non-linear; (ii) the distribution of the underlying
process has fat tails; and (iii) the conditional expectation of future sales growth is non-linear in
current growth, with mean-reversion in the tails. Next, we build a forecasting model that connects
these facts. The key ingredients in our model are that the underlying process is non-Gaussian, but
forecasters fail to recognize this. After showing formally that our model can explain the three facts
we documented in the data, we estimate it and show that it does so quantitatively. Finally, we show

35



that our framework is consistent with evidence from an online forecasting experiment in which
the underlying process is non-Gaussian and that it provides an explanation for non-linearity in the
momentum of stock returns.

Our paper raises several questions for further work. First, our model of belief formation is
reduced-form. It would be fruitful to try to provide a microfoundation for why forecasters ignore
fat tails in data-generating processes, which would allow us to study how this bias would manifest
for other data-generating processes. Second, it would be useful to try to estimate our shrinkage
parameter using other data on subjective forecasts. Variation in this shrinkage parameter across
different data-generating processes would be useful for disciplining a more microfounded model of
belief formation. Finally, our paper raises the question of how learning occurs in an environment
with fat-tailed processes, which is likely to occur much more slowly and be more difficult.
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Online Appendix to “Expectations Formation with
Fat-Tailed Processes: Evidence and Theory”

A Additional Results

Figure A.1: Forecast error of log growth (normalized)
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Notes: We show here the distribution of normalized log growth git. The line corresponds to a Gaussian fit.
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Figure A.2: The Error-revision relationship: Raw log growth rate
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Notes: We show here the binned scatter plot of the error-revision relationship for raw log sales growth. See definitions
of raw and normalized growth in Section 1. Panel A is for the entire sample; Panel B restricts the sample to deciles 2
to 9. Panel C focuses on the bottom decile, and Panel D on the top decile of revisions. Vertical bars represent 95%
confidence intervals, assuming the relationship is piecewise linear and continuous (option “ci(1 1)” in Stata command
“binsreg”).
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Figure A.3: The Error-revision relationship: Adjusted percent growth rate

-.4

-.2

0

.2

.4

Er
ro

r

-2 -1 0 1 2 3

Panel A: Full Sample

-.2

-.1

0

.1

-1 -.5 0 .5 1

Panel B: 10-90% revisions

-.2

0

.2

.4

.6

Er
ro

r

-3 -2.5 -2 -1.5 -1
Revision

Panel C: Bottom 10% revisions

-.6

-.4

-.2

0

.2

1 1.5 2 2.5 3 3.5
Revision

Panel D: Top 10% revisions

Notes: We show here the binned scatter plot of the error-revision relationship for adjusted percent sales growth. See
definitions of raw and normalized growth in Section 1. Panel A is for the entire sample; Panel B restricts the sample
to deciles 2 to 9. Panel C focuses on the bottom decile, and Panel D on the top decile of revisions. Vertical bars
represent 95% confidence intervals, assuming the relationship is piecewise linear and continuous (option “ci(1 1)” in
Stata command “binsreg”).
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Figure A.4: The Error-revision relationship: Macro-adjusted log growth rate
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Notes: We use here an adjustment of errors and revisions at the macro level. Each year, we compute the mean absolute
deviation of raw log growth, as a measure of cross-sectional volatility. Then, we take the error and revision of raw log
growth and normalize them by this MAD. We show here the binned scatter plot of the error-revision relationship after
such adjustment. Panel A is for the entire sample; Panel B restricts the sample to deciles 2 to 9. Panel C focuses on the
bottom decile, and Panel D on the top decile of revisions. Vertical bars represent 95% confidence intervals, assuming
the relationship is piecewise linear and continuous (option “ci(1 1)” in Stata command “binsreg”).
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Figure A.5: The Error-revision relationship: US vs. Non-US Firms
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Panel 2: Non US Firms
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Notes: We show here the binned scatter plot of the error-revision relationship for adjusted log sales growth. See
definitions of raw and normalized growth in Section 1. Panel 1 is for US firms, and Panel 2 for international firms. Each
of these two panels has 4 subpanels: Panel A is for the entire sample; Panel B restricts the sample to deciles 2 to 9.
Panel C focuses on the bottom decile, and Panel D on the top decile of revisions. Vertical bars represent 95% confidence
intervals, assuming the relationship is piecewise linear and continuous (option “ci(1 1)” in Stata command “binsreg”).
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Figure A.6: The Error-revision relationship: Individual Analyst Forecasts
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Notes: We show here the binned scatter plot of the error-revision relationship for adjusted log sales growth. Crucially,
we use here individual (not consensus) analyst forecasts. The forecast error is defined as git+1 − Fjtgit+1 for analyst
j, firm i, at date t. Similarly, revisions are defined as Fjtgit+1 − Fjt−1git+1. See definitions of raw and normalized
growth in Section 1. Panel A is for the entire sample; Panel B restricts the sample to deciles 2 to 9. Panel C focuses
on the bottom decile, and Panel D on the top decile of revisions. Vertical bars represent 95% confidence intervals,
assuming the relationship is piecewise linear and continuous (option “ci(1 1)” in Stata command “binsreg”).
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Figure A.7: The Error-revision relationship: Controlling for year fixed effects
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Notes: We show here the binned scatter plot of the error-revision relationship for adjusted log sales growth, after
controlling for year dummies (absorb(year) option in Stata command binsreg). See definitions of raw and normalized
growth in Section 1. Each of these two panels has 4 subpanels: Panel A is for the entire sample; Panel B restricts the
sample to deciles 2 to 9. Panel C focuses on the bottom decile, and Panel D on the top decile of revisions. Vertical bars
represent 95% confidence intervals, assuming the relationship is piecewise linear and continuous (option “ci(1 1)” in
Stata command “binsreg”).
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Figure A.8: The Error-revision relationship: The role of analyst experience
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Notes: We show here the binned scatter plot of the error-revision relationship for adjusted log sales growth by quartile
of analyst experience. Crucially, we use here individual (not consensus) analyst forecasts. Analyst experience of analyst
j in year t is the number of firms followed by j up to and including t (in our sample). The quartile breakpoints are 11,
28, and 65. The forecast error is defined as git+1 − Fjtgit+1 for analyst j, firm i, at date t. Similarly, revisions are
defined as Fjtgit+1 − Fjt−1git+1. See definitions of raw and normalized growth in Section 1. Panel A is for the entire
sample; Panel B restricts the sample to deciles 2 to 9. Panel C focuses on the bottom decile, and Panel D on the top
decile of revisions. Vertical bars represent 95% confidence intervals, assuming the relationship is piecewise linear and
continuous (option “ci(1 1)” in Stata command “binsreg”).
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Figure A.9: The Error-revision relationship: Normalized EPS to Price Ratios
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Notes: We show here the binned scatter plot of the error-revision relationship for raw EPS-to-Price ratios. The
forecast error is defined as EPSit+1−FjtEPSit+1

Pit−2
for analyst j, firm i, at date t. Similarly, revisions are defined as

FjtEPSit+1−Fjt−1EPSit+1

Pit−2
. Panel A is for the entire sample; Panel B restricts the sample to deciles 2 to 9. Panel C

focuses on the bottom decile, and Panel D on the top decile of revisions. Vertical bars represent 95% confidence
intervals, assuming the relationship is piecewise linear and continuous (option “ci(1 1)” in Stata command “binsreg”).
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Figure A.10: Fat tails of the sales growth distribution: Raw log growth
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Notes: We describe here the tail of the distribution of raw log growth rates Git. In Panel A, we show the scatter plot
of log rank of |Git| against log |Git|. We restrict ourselves to the top decile of absolute growth and remove the top
percentile. We also report the slope of the regression of log rank on log growth, estimated by OLS (−2.7). In Panel B,
we show the log density of Git. For each centile, we estimate density as the log of the number of observations in the
centile, divided by its range. The dashed line is a quadratic fit on the centiles between the 11th and 89th centiles. The
two dashed vertical lines correspond to the cutoff values of the top and bottom decile of the distribution of log growth.
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Figure A.11: Fat tails of the sales growth distribution: Adjusted percent growth
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Notes: We describe here the tail of the distribution of adjusted percent growth rates ĝit. In Panel A, we show the scatter
plot of log rank of |ĝit| against log |ĝit|. We restrict ourselves to the top decile of absolute growth and remove the top
percentile. We also report the slope of the regression of log rank on log growth, estimated by OLS (−2.7). In Panel B,
we show the log density of ĝit. For each centile, we estimate density as the log of the number of observations in the
centile, divided by its range. The dashed line is a quadratic fit on the centiles between the 11th and 89th centiles. The
two dashed vertical lines correspond to the cutoff values of the top and bottom decile of the distribution of log growth.
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Figure A.12: Fat tails of the sales growth distribution: Macro-adjusted log growth rate
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Notes: We describe here the tail of the distribution of macro-adjusted log growth rates g̃it. Each year, we compute the
deviation of raw log growth rates from their mean, and divide this by their cross-sectional mean absolute distance from
that mean. In Panel A, we show the scatter plot of log rank of |g̃it| against log |g̃it|. We restrict ourselves to the top
decile of absolute growth and remove the top percentile. We also report the slope of the regression of log rank on log
growth, estimated by OLS (-2.7). In Panel B, we show the log density of g̃it. For each centile, we estimate density
as the log of the number of observations in the centile, divided by its range. The dashed line is a quadratic fit on the
centiles between the 11th and 89th centiles. The two dashed vertical lines correspond to the cutoff values of the top and
bottom decile of the distribution of log growth.
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Figure A.13: git+1 as a function of git: unadjusted log growth
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Notes: This figure reports 4 binned scatter plots of unadjusted log growth Git+1 against Git. Panel A shows the entire
sample. Panel B restricts the sample to all observations of git between the first and last decile breakpoints. Panel C
focuses on the bottom decile, and Panel D on the top decile. Vertical bars represent 95% confidence intervals, assuming
the relationship is piecewise linear and continuous (option “ci(1 1)” in Stata command “binsreg”).
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Figure A.14: git+1 as a function of git: adjusted percent growth
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Notes: This figure reports 4 binned scatter plots of adjusted percent growth ĝit+1 against ĝit. Panel A shows the entire
sample. Panel B restricts the sample to all observations of git between the first and last decile breakpoints. Panel C
focuses on the bottom decile, and Panel D on the top decile. Vertical bars represent 95% confidence intervals, assuming
the relationship is piecewise linear and continuous (option “ci(1 1)” in Stata command “binsreg”).
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Figure A.15: Regression coefficients of git+1 on git by quantile
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Notes: In this figure, we report the estimates of β in the following regression:

git+1 = α+ βgit + ϵit+1

where git is the normalized log sales growth rate, and error terms are assumed to be correlated within firms and within
years. This regression is run on 8 different subsamples, whose ranges are described in the x-axis of this chart. These
subsamples correspond to the tails and the bulk of the distribution of git. The point estimate of β is the solid black line,
while the dashed lines correspond to the 95% confidence interval.
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Figure A.16: Experiment interface

Notes: This figure is a screenshot of our experiment interface. The green dots are generated by the DGP:

gt+1 = g∗t+1 + 0.608ϵt+1

g∗t+1 = 0.529g∗t + 0.631ut+1

which is obtained by matching several moments of the data (see “Structural estimation” section). ϵt is drawn from a
t-distribution with 2.533 degrees of freedom. The two yellow dots correspond to forecasts produced by the participant.
The operation is repeated 40 times.
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Table A.1: Percent Loss in One-Period Ahead Mean-Squared Error Relative to Rational Expectations

Panel A: Kalman Filter Forecast

ν
ρ 2.1 2.5 2.533 3.0 3.5 4.0 4.5 5.0

0.1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.2 0.1% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0%
0.3 0.2% 0.4% 0.4% 0.3% 0.2% 0.2% 0.1% 0.1%
0.4 0.4% 0.7% 0.7% 0.6% 0.4% 0.3% 0.2% 0.2%
0.5 0.6% 1.1% 1.1% 0.9% 0.7% 0.5% 0.4% 0.3%
0.529 0.7% 1.2% 1.2% 1.0% 0.8% 0.6% 0.4% 0.3%
0.6 1.0% 1.6% 1.6% 1.3% 1.0% 0.7% 0.5% 0.4%
0.7 1.4% 2.2% 2.2% 1.8% 1.4% 1.0% 0.8% 0.6%
0.8 1.9% 3.0% 2.9% 2.4% 1.8% 1.4% 1.1% 0.8%
0.9 2.5% 3.6% 3.6% 3.0% 2.3% 1.8% 1.4% 1.1%

Panel B: Forecast in (11) with Estimated λ

ν
ρ 2.1 2.5 2.533 3.0 3.5 4.0 4.5 5.0

0.1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.4 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
0.5 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
0.529 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
0.6 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%
0.7 0.1% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0%
0.8 0.2% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1%
0.9 0.2% 0.3% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1%

Notes: This table shows the percent loss in mean-squared error (MSE) in model simulation of different one-period
ahead forecasts relative to the one-period ahead rational expectation computed using Algorithm 1. Panel A shows the
results for the Kalman filter forecast, computed as in (10); Panel B shows the results for the forecast in (11) with the
estimated value of λ in Table 2. The different rows correspond to different values of ρ, while the different columns
correspond to different values of ν. For each different combination of ρ and ν, σϵ and σu are adjusted so that the
analytical variance of gt and g∗t remain the same as in the model with the estimated parameters in Table 2.
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Figure A.17: Convergence of Kalman Filter to Steady State
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Notes: This figure plots the convergence of Σt and Kt as a function of t, which are defined in the Kalman filter updating
equations in (10). These plots are based on our estimated DGP parameters in Table 2.
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Figure A.18: Approximating the Rational Expectation with a State-Dependent Kalman Filter
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Notes: This figure shows binned scatterplots of two different one-period ahead forecasts against the one-period ahead
rational expectation computed with the particle filter, averaging across all simulations. The first forecast in red
corresponds to the Kalman filter in (10). The second forecast in blue corresponds to the state-dependent Kalman filter,
where γ0 = 2.67 and γ1 = 2.45 are estimated by minimizing the mean squared difference with the rational expectation
across all simulations. The legend also reports the R2 from regressions using the raw data underlying the binned
scatterplots.
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Figure A.19: Out-of-Sample Comparison of State-Dependent Filter and Kalman Filter
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Notes: The left panel of this figure plots the difference between the out-of-sample MSE of the state-dependent filter and
the Kalman filter. We compute Kalman filter forecasts using the steady-state updating equations, given that convergence
happens very quickly (Figure A.17). The state-dependent filter forecasts are constructed according to (12), where
(γ0, γ1) are estimated by minimizing the MSE of forecasts on past data. For each simulated time series, we reestimate
(γ0, γ1) after every 20 observations, and then compute the MSE of the state-dependent and Kalman filter forecasts
on the next 20 observations. The average difference across 10,000 simulated time series between these two MSEs
is then plotted in the left panel of this graph. The right panel shows the standard deviation of the estimated (γ0, γ1)
(normalized by their means) across the simulated time series.
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B Proofs and Additional Derivations

B.1 Proof of Proposition 1

Proof. From the definition of the process, we obtain:

E (gt+1|gt) = ρE (g∗t |gt)

We now apply Tweedie’s formula (Robbins, 1956; Efron, 2012), which states that, for y = x+ η, where x is

Gaussian and x and ϵ are independent, then:

E(x|y) = −σ2
x

d log h(y)

dy

where h is the marginal distribution of y and σ2
x the variance of x (the Gaussian part of y). Combining the

last two equations delivers the result

B.2 Proof of Corollary 1

The proof of Corollary 1 relies on the following Lemma.

Lemma B.1. As g → +∞, then:

E(g∗|g)→

∫
x
(
1 + ν x

g

)
Φ(x)dx∫ (

1 + ν x
g

)
Φ(x)dx

The proof of this lemma comes from Tauberian logic. The conditional expectation is a weighted average. As

g becomes very large, the weights converge to a function. So the weighted average converges to an average

that uses the limiting function.

We now state our proof of the result.

Proof. This result relies on the property that the distribution of ϵ, f(·), is asymptotically a power law. First,

given the DGP, we know that:

E(gt+1|gt) = ρE(g∗t |g∗t + ϵt) ≡ ρE(g∗| g∗ + ϵ︸ ︷︷ ︸
≡g

)

where we drop the t subscript for convenience. Denoting Φ as the PDF of g∗, the conditional expectation can
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be written as follows:

E(g∗|g) =
∫
xf(g − x)Φ(x)dx∫
f(g − x)Φ(x)dx

Now, given the Pareto assumption, and for a given x, as g → +∞

f(g − x)→ (g − x)−ν ≈ g−ν

(
1 + ν

x

g

)
Now, it is easy to see that: ∫

x

(
1 + ν

x

g

)
Φ(x)dx = Eg + ν

Eg2

g
= ν

σ2
g

g

and: ∫ (
1 + ν

x

g

)
Φ(x)dx = 1

Applying Lemma B.1 and the last two equations delivers the result.

B.3 Proof of Proposition 2

Proof. Note that, by definition of subjective expectations:

ERRt+1 =
1−K

K
REVt + (gt+1 − ρgt)︸ ︷︷ ︸

σϵϵt+1+σuut+1−ρσϵϵt

(B.1)

Thus, the conditional expectation writes:

E (ERRt+1|REVt) =
1−K

K
REVt − ρσϵE (ϵt|REVt)

We thus need to focus on the second term on the right-hand side. Given the definition of forecasts in equation

(8), simple algebra leads to the following decomposition for revisions:

REVt = Kρσϵ

ϵt −Kρ
∑
s≥0

((1−K)ρ)s ϵt−s−1︸ ︷︷ ︸
≡−Et

+
σu
σϵ

∑
s≥0

((1−K)ρ)s ut−s︸ ︷︷ ︸
≡Ut


where, by definition, ϵt, Et and Ut are independent. Clearly, Ut is Gaussian (it is a linear combination of

Gaussians). Et is asymptotically Pareto. Assume Et → +∞, since ϵ is asymptotically Pareto, we have that:

P (Et > E) = P

Kρ
∑
s≥0

((1−K)ρ)s ϵt−s−1 > E
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≈
∑
s≥0

P (Kρ ((1−K)ρ)s ϵt−s−1 > E)

≈
∑
s≥0

Θ

(
Kρ ((1−K)ρ)s

E

)ν

≈ Θ
1

Eν︸ ︷︷ ︸
P (ϵt>E)

× Kνρν

1− ρν(1−K)ν

where the second line is a property of regularly varying functions (of which Pareto is a subcategory). See for

instance Jessen and Mikosch (2006), Lemma 3.1. This proves that Et is also asymptotically Pareto with tail

ν but a different scale given by the formula.

Now, we need to compute, for large revisions:

E (ϵt|REVt) = E (ϵt|Kρσϵ (ϵt + Et + Ut))

= E (ϵt|ϵt + Et + Ut)

≈ E (ϵt|ϵt + Et)

since large revisions are asymptotically driven by the fat-tailed processes only.

To compute the expectations of one Pareto variable conditional on the sum of two, one needs to know the

relative scale of these two variables. The above algebra shows that:

f(ϵ) ≈ 1− ρν(1−K)ν

Kνρν
g(E)

where we label g the p.d.f. of Et. Property 4.9 of Denuit et al. (2024) establishes that, in this case:

E (ϵt|ϵt + Et) ≈
1−ρν(1−K)ν

Kνρν

1 + 1−ρν(1−K)ν

Kνρν

. (ϵt + Et)

≈ 1

1 + Kνρν

1−ρν(1−K)ν

.
REVt

Kρ

We plug this result into equation (B.1) and obtain that:

E (ERRt+1|REVt) ≈

[
1−K

K
− 1

K

1

1 + Kνρν

1−(1−K)νρν

]
︸ ︷︷ ︸

≡µ

REVt

Now, we need to use the expression of the Kalman gain K:

K =
P

1 + P
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P (1− ρ(1−K)) = σ2
u/σ

2
ϵ

whose combination shows that:

1−K =
1

1 + K2ρ2+σ2
u/σ

2
ϵ

1−(1−K)2ρ2

.

Given our assumption that ν > 2 and that ρ, K and 1−K are all positive but smaller than 1, we have that:

K2ρ2

1− (1−K)2ρ2
>

Kνρν

1− (1−K)νρν

Combined with the fact that σ2
u/σ

2
ϵ > 0, this ensures that µ < 0, delivering the desired result.

B.4 Proof of Corollary 2

Proof. By definition of the Kalman gain, we have that:

E (ERRt+1REVt) = 0

Now, for large enough revisions, E (ERRt+1|REVt) ≈ µREVt, so that E (ERRt+1REVt|REVt) ≈
µREV 2

t < 0. This delivers the result.

B.5 Proof of Proposition 3

Proof. By the definition of the process, we have:

var(gt+1|gt) = ρ2var(g∗t |gt) + σ2
u + σ2

ϵ

Differentiate the log density twice.

d2

dg2
log h(g) =

h′′(g)

h(g)
−
(
h′(g)

h(g)

)2

As we have just seen, h′(g)
h(g) = −E(g∗t |g)

σ2
g∗

. Simple algebra shows that:

h′′(g)

h(g)
= − 1

σ2
g∗

+
E((g∗t )

2|g)
σ4
g∗
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so combining the two gives:

d2

dg2
log h(g) = − 1

σ2
g∗

+
E((g∗t )

2|g)
σ4
g∗

−

(
E(g∗t |g)
σ2
g∗

)2

=
1

σ4
g∗

(
−σ2

g∗ + var(g∗t |gt)
)

which then allows us to substitute var(g∗t |gt) into the formula for var(gt+1|gt).

B.6 Additional Details on Asset Pricing Model in Section 5.2

We first derive (16). Define the return on a stock as Rt+1 = Pt+1+Dt+1

Pt
− 1, which has sales St,

earnings Et, and a payout ratio DEt =
Dt
Et . As in prior sections, denote the (log) growth rate of sales as

gt = logSt−logSt−1. Assume that earnings growth is a constant fraction of sales growth: log
(

Et
Et−1

)
= γgt.

Denoting lower-case letters as logs and following Campbell and Shiller (1988), we can approximate the

price-earnings ratio to first order around the mean price-dividend ratio as:

pt − et = κ+ γgt+1 − rt+1 + (1− c)(dt+1 − et+1) + c(pt+1 − et+1),

where c = epd

1+epd
, pd is the mean of the log price-dividend ratio, and κ is an (unimportant) constant. Assuming

a constant log payout ratio of de, we can iterate the first equation forward to obtain:

pt − et =
κ

1− c
+ de+

∞∑
k=1

ck−1 (γgit+k − rit+k) + lim
k→∞

ck(pit+k − eit+k).

Imposing the usual transversality condition, the previous equation becomes:

pt − et =
κ

1− c
+ de+

∞∑
k=1

ck−1 (γgit+k − rit+k) .

Now, rearranging the first equation above, we have

rt+1 = κ+ γgt+1 + (1− c)de+ c(pt+1 − et+1)− (pt − et).

Letting Ft denote investors’ subjective beliefs, the previous two equations imply:

Ft+1rt+1 − Ftrt+1 = γFt+1gt+1 − γFtgt+1 + c [(pt+1 − et+1)− Ft(pt+1 − et+1)] .
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Rewriting, we obtain:

rt+1 − Ftrt+1 = γ (Ft+1 − Ft)
∞∑
k=0

ckgt+1+k − (Ft+1 − Ft)
∞∑
k=1

ckrt+1+k.

To derive predictions based on our model of subjective expectations, we follow Bouchaud et al. (2019) and

Nagel and Xu (2019) and assume that subjective risk premia are constant and equal to the risk-free rate, rf ,

plus a constant risk premium, π. Under this assumption, the final term in the previous equation is zero and

we obtain (16):

rt+1 = log(rf + π) + γ (Ft+1 − Ft)

∞∑
k=0

ckgt+1+k︸ ︷︷ ︸
=
∑∞

k=1 c
kREVtgt+k

.

Given a panel of simulated earnings growth expectations, we can compute the final two terms in the

previous equation by recognizing that our model of belief formation implies:

Ft

∞∑
k=0

ckgt+1+k = Ftgt+1

∞∑
k=0

ckρk =
Ftgt+1

1− cρ
.

Using this relationship, we can now simulate a path of return realizations using the following relationship:

rt+1 = log(1 +Rf + π) +
γ

1− cρ
(gt+1 − Ftgt+1) .

We then set γ to generate a volatility of Rt equal to 15%, after winsorizing all returns that are above 100%.
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C Computing Rational Expectations Using the Particle Filter

Constructing the forecasts in (11) requires computing the rational expectation, E (gt+1 | g0, ..., gt). In the

case where ϵt is normally distributed, this corresponds to the Kalman filter and takes the simple closed form

in (10). However, outside of this special case, this expectation cannot be computed in closed form and instead

must be computed using sequential Monte Carlo methods. We choose to compute this expectation using the

particle filtering algorithm from Fernandez-Villaverde and Rubio-Ramirez (2007) (also known as sequential

importance sampling), which is described in Algorithm 1.

The goal of this algorithm is to estimate the posterior distribution of a latent state process, {g∗t }, given

a sequence of observed data, {gt}Tt=1. The algorithm proceeds by approximating the filtering distribution

p(g∗t | g1, ..., gt) using a collection of P particles, each representing a possible realization of the latent state.

At each time step t, these particles are propagated forward via the state transition equation for g∗t , incorporating

stochastic innovations sampled from the distribution of ut. The new particles are then evaluated against

the observed data using a likelihood function f(·), the density function of the distribution of ϵt. Particles

are assigned weights according to this likelihood, and a resampling step is used to adjust the distribution

of the particles based on their posterior probabilities. Under mild conditions, Fernandez-Villaverde and

Rubio-Ramirez (2007) show that the expectations computed in Step 5, which depend on P , converge to their

population counterparts as P →∞. This is the sense in which the algorithm “works.”

In the case where f(·) is the density function of a normal distribution, the expectations computed in Step 5

converge to those of the Kalman filter as P →∞. However, in the presence of non-Gaussian shocks, as in

our case, these two solutions will differ. The key step in this algorithm is Step 6, where each particle’s weight

is computed using f(·). Intuitively, this weighting step incorporates the non-normality of f(·) by “tilting” the

contribution of each particle to the posterior distribution of the latent state according to how well it explains

the data under the true distribution. As a result, particles that better align with the observed data under the

correct distribution are favored during the resampling step (Step 7), allowing the particle approximation to

capture features—like skewness or fat tails—that the Kalman filter necessarily misses.

We run the particle filter on each of our 100 simulations of length 100,000 with P set to 10,000.16 The

most computationally intensive part of this Algorithm 1 is Step 7, which requires resampling a large number

of particles from a non-uniform distribution.

16We choose this particular value of P because it is the largest value of P such that all the particles fit in the memory
of our GPU. We have found very similar results with P set to 5,000, which makes us confident that 10,000 is sufficiently
large that the particle filter recovers the true conditional expectations.
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Algorithm 1 Particle Filter

1: Fix a number of particles, P , and time series of length T , {gt}Tt=1.
2: Initialize particles, {ξp0}Pp=1, at ξp0 = g∗0 for all p, and set t = 1.
3: Sample {up

t}Pp=1 from N(0, σ2
u).

4: Update particles according to:

{ξpt }Pp=1 = {ρξ
p
t−1 + up

t}Pp=1.

5: Compute and store:

E(gt | g1, ..., gt−1) = E(g∗t | g1, ..., gt−1) =
1

P

P∑
p=1

ξpt

6: Define f(·) as the PDF of ϵt and compute:

qpt =
f(gt − ξpt )∑P
p=1 f(gt − ξpt )

,

7: Resample {ξpt }Pp=1 from {ξpt }Pp=1 with replacement and sampling weights {qpt }.
8: if t = T then
9: Stop.

10: else
11: Set t← t+ 1 and go to Step 2.
12: end if
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