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Appendix A. Additional Derivations and Proofs

In this appendix, we provide derivations of the results stated in the main text. Recall that the indices t and h have
been suppressed but that all variables implicitly vary across years t and forecasting horizon h.

Proof of Lemma 1. Defining ei = pi −E(pi � Xi,Zi), the first equation holds trivially. The conditional mean indepen-
dence conditions, E(ei � xi,zi) = 0 and E(zi � xi) = 0, follow from the law of iterated expectations. Starting with the
second equality, we have

E(zi � xi) = E [E (zi � xi,Xi) � xi]
= E (E(zi � Xi) � xi) .

From the definition of zi, we have E(zi � Xi) = 0. Combined with the previous expression, this delivers the desired
result. The proof for the second equality follows similarly from the law of iterated expectations.

E(ei � xi,zi) = E [E (ei � xi,Xi,zi,Zi) � xi,zi]
= E [E (ei � Xi,Zi) � xi,zi] ,

where the inner expectation equals zero by the definition of ei, which delivers the desired result.

Proof of Lemma 2. Defining hi = pi −E(F jpi � Xi,Zi), (3) follows trivially. The conditional mean independence con-
dition, E(hi j � xi,zi) = 0, follows from the law of iterated expectations.

E(hi j � xi,zi) = E �E �hi j � xi,Xi,zi,Zi� � xi,zi�
= E �E �hi j � Xi,Zi� � xi,zi� ,

where the inner expectation equals zero by the definition of hi j, which delivers the desired result.

Proof of Lemma 3. Using Lemma 1, we have MSE
e = E �(xi−pi)2� = E �z2

i
�+E(e2

i
). Using Lemma 2 and the defini-

tion of consensus forecasts, we have MSE
a = E �(Fpi−pi)2� = E �b2

i
�+E(h2

i
)+E(e2

i
)+E(hiei). Under the assump-

tion that hi j and ei are uncorrelated, subtracting the previous expressions for MSE
e and MSE

a delivers the desired
result.
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Proof of Proposition 1. To start, note that the first part of Assumption 1 and Lemma 2 imply

Fjpi = gi+azi+hi j, gi ≡ E (Fpi � Xi) .
Taking averages across forecasters to arrive at consensus forecasts, we obtain

Fpi = gi+azi+hi, hi ≡ 1
Ji

�
j

hi j.

Next, we can derive the noise in consensus forecasts:
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The first equality follows by definition, the second from the law of iterated expectations, the fourth by the third part
of Assumption 1, and the fifth by the fourth part of Assumption 1. We can similarly derive the bias in consensus
forecasts:

E �b2
i
� = E �(gi+azi−xi− zi)2�
= E �(gi−xi)2�+(1−a)2E �z2

i
�

= D+(1−a)2Q.

Combining the previous two results with Lemma 3 delivers the desired result.

Proof of Proposition 2. The first part of Assumption 1 and Lemma 2 imply

Fjpi = gi+azi+hi j, gi ≡ E (Fpi � Xi) ,
which gives F

∗
i j
= azi+hi j. Taking variances and applying the orthogonality condition from Lemma 2 gives

var�F∗
i j
� = var(azi+hi j) = a2Q+S,

delivering the second equation in the proposition. The third equation follows from the third part of Assumption 1:

cov�F∗
i j
,F∗

ik
� = cov�azi+hi j,azi+hik� = a2Q.
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Finally, the first equation follows from applying Lemma 1, Lemma 2, and the second part of Assumption 1:

cov(p∗
i
,F∗

i j
) = cov(zi+ei,azi+hi j) = aQ.

Proof of Proposition 3. The first part of Assumption 1 and Lemma 2 imply

F
j

t pit+h = g
h

it
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h

it
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i jt
, g

h

it
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j

t
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. Forecast revisions are then
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Taking variances, applying the definition of s2
rev

and s2
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, and using the assumption that noise is uncorrelated over
time delivers the second equation in the proposition. Forecast errors are equal to
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Applying the equation derived for s2
rev

delivers the result.

Proof of Proposition 4. From Proposition 1, we have

MSE
a = D+(1−a)2Q+ 1

J
S+E(e2

i
).

Under the assumption of joint normality,

F
e+api = xi+E (zi � xi,Fpi)

= xi+ cov(zi,azi+hi)
var(azi+hi) (Fpi−xi)
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= xi+b [az+hi] , b = aQ
a2Q+ 1

J
S
.

This implies that MSE
e+a = E(e2

i
)+(1−ba)2Q+b 2 1

J
S. Subtracting this from MSE

a delivers the result.

Proof of Proposition 5. First note that combining Assumption 2 with the law of iterated expectations implies

E (pi � Xi) ≡ xi = �1−rh−1�µ +rh−1
xit ,

≡ �1−rh−1�µ +rh−1
E (EPSit+1 � Xi) .

Therefore, at horizon h, the bias is

D = E �(E(EPSt+h�Xi)−E(FtEPSt+h�Xi))2� ,
= E ��rh−1

xit −rh−1
E(Ftxit �Xi)�2� = r2(h−1)

E �(xit −E(Ftxit �Xi))2� = r2(h−1)D1.

The noise is

S = var(ht,h) = var(FtEPSt+h−E (FtEPSt+h�Xi,Zi)) ,
= var(Ftxt+h−E(Ftxt+h�Xi,Zi)) = r2(h−1)

var(ht,1) = r2(h−1)S1
h .

The result follows because r < 1 by assumption.

A.3



Appendix B. Additional Tables and Figures

Table A1. Variables Included in Xit

This table lists the set of variables that we include in Xit , which we use to form our econometric forecast. As described in Section 1.2, we include two lags of each
variable. See Appendix C for a detailed discussion of how we use these variables.

Panel A: Collected from WRDS Financial Ratios

The following financial ratios: capei, be, bm, evm, pe_exi, pe_inc, ps, pcf, dpr, npm, opmbd, opmad, gpm, ptpm, cfm, roa, roe, roce, aftret_eq,
aftret_invcapx, aftret_equity, preret_noa, pretret_earnat, GProf, equity_invcap, debt_invcap, totdebt_invcap, capital_ratio,
int_totdebt, cash_lt, invt_act, rect_act, debt_at, debt_ebitda, short_debt, curr_debt, lt_debt, profit_lct, ocf_lct, cash_debt,
fcf_ocf, lt_ppent, dltt_be, debt_assets, debt_capital, de_ratio, intcov, intcov_ratio, cash_ratio, quick_ratio, curr_ratio,
cash_conversion, inv_turn, at_turn, rect_turn, pay_turn, sale_invcap, sale_equity, rd_sale, adv_sale, accrual, ptb, divyield

Panel B: Collected from CRSP

Two-digit SIC dummies, return in the month prior to fiscal year-end, cumulative return in the twelve months prior to fiscal year-end excluding the last
month, trailing 5-year monthly return volatility (all returns adjusted for delisting), stock price on day of fiscal year-end

Panel C: Collected from Compustat

Natural log of total assets, dummies for year of fiscal report

Panel D: Collected from I/B/E/S

pit , pit−1, pit−2, number of distinct analysts who issue forecasts in the 45 days following the release of the prior FY report
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Table A2. Robustness of the Term Structure of Forecasting Accuracy: Contemporaneous Earnings–
Yield

This table examines the robustness of the results in Table 2 and Table 4 to including an additional predictor: the earnings–yield at time t on the basis of the stock price
at tR + 45, where tR is defined in Figure 1, calculated as EPSit

P
itR+45

. Panel A contains the mean squared error of analyst forecasts in the first column, denoted MSE
a

h
, and

of our econometric forecasts, denoted MSE
e

h
, across different forecasting horizons for forecasts of earnings yields, pit+h. Panel B contains the mean squared error of

analyst forecasts in the first column, denoted MSE
a

h
, and of our econometrician + analyst forecasts, denoted MSE

e+a

h
, across different forecasting horizons for forecasts

of the realization of EPS at t + h divided by price per share at t. The numbers reported in the table are normalized by the mean realization of p2
it+h

at each horizon.
In parentheses, we report the Diebold–Marino test statistics for testing the relative accuracy of the two forecasts under a squared loss function, where we calculate the
asymptotic variance by performing a bootstrap at the year level with 1,000 iterations. The sample used in this table is slightly smaller than that in Table 1 due to the data
restrictions imposed by the inclusion of this additional predictor.

Panel A: Analyst vs. Econometrician

MSE
a

h
MSE

e

h

Horizon: h Analyst Random Walk Elastic Net

1 Quarters 4.54% 25.29% 20.5%
(25.17) (21.51)

2 Quarters 8.31% 29.25% 19.52%
(23.07) (18.83)

3 Quarters 12.94% 33.21% 21.94%
(19.27) (18.78)

4 Quarters 18.53% 24.74% 25.22%
(8.95) (12.38)

Panel B: Analyst vs. Econometrician + Analyst

MSE
a

h
MSE

e+a

h

Horizon: h Analyst Elastic Net

1 Quarters 4.54% 4.5%
(-2.8)

2 Quarters 8.31% 8.38%
(1.66)

3 Quarters 12.94% 12.77%
(-1.2)

4 Quarters 18.53% 17.53%
(-3.96)
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Figure A1. Estimates for Large and Small Firms Separately

We reproduce here Figure 2, separately for large and small firms. We first split the sample into large firms (above median assets) and small ones (below median). Then,
we run our estimation procedure on both samples separately. Standard errors are generated through block bootstrap. Because this figure is here for illustrative purposes,
we only did 20 bootstraps per panel.

Panel A: Small Firms

Panel B: Large Firms
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Appendix C. Additional Details on Supervised Learning Tech-
niques and Forecast Formation

C.1 Supervised Learning Techniques

This section provides a more detailed description of the supervised learning techniques that we explore.

Elastic net. The first estimator that we explore is elastic net, which is defined as follows for a given set of predictor
variables Xit : L(b ,a1,a2) ≡�

i

��pi−X
′
it
b�2�+a1��b�1+a2��b�2,

b̂ Lasso ≡ argmin
b
L(b ,a1,0), b̂ Ridge(a2) ≡ argmin

b
L(b ,0,a2),

b̂ Elastic net ≡ argmin
b
L(b ,a1,a2).

To choose the hyperparameters a1 and a2, we use cross-validation on the training set, detailed in Appendix C.2.
Intuitively, cross-validation consists of breaking up the training sample into smaller datasets, fitting models on these
smaller datasets, and examining which values of the hyperparameters generate the best performance on the other
parts of the training set. Importantly, cross-validation is done entirely with the training set to avoid introducing any
look-ahead bias.

Tree-based methods. We also consider two tree-based methods: random forest (RF) and gradient-boosted trees
(GBT). The building block of tree-based estimators is regression trees, which are nonparametric regression estimators
(unlike penalized linear estimators) designed to capture arbitrary nonlinearities among the variables in Xit .

We first describe regression trees, which are “grown” in sequential steps to approximate a function. The tree begins
with an initial node containing all observations. Next, this initial node is split into two nodes: observations with xit < c

and xit ≥ c. To make this split, the econometrician chooses the variable xit ∈ Xit and c to minimize the MSE. This
process of splitting based on a chosen covariate and value continues with the two new subsamples until a terminal
criterion is satisfied (e.g., an upper bound on the number of observations in each terminal node or the number of splits
is reached). The final regression values are then the averages of the outcome variable across all of the observations
remaining in each of the terminal nodes.

The process of growing a regression tree immediately illustrates the potential problem with such trees: they are
likely to overfit (i.e., they have high prediction variance), especially if they grow extremely large. Without restrictions
on the size of the tree, perfect in-sample fit could be achieved by having one observation in each terminal node, but
this will perform terribly out of sample. To address this tendency to overfit, many “ensemble” methods have been
developed, which combine several decision trees with a form of regularization to make more accurate out-of-sample
predictions. The two tree-based methods that we consider, RF and GBT, are ensemble methods. The core idea behind
RF and GBT is to grow many uncorrelated trees and then average their predictions.
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RF is constructed based on the intuition of bootstrapping. On each bootstrapped sample, a regression tree is grown
with a stopping criterion on the number of splits L with one adjustment: only a random subset of predictor variables is
considered at each split.3 These two steps are then repeated B times, generating B regression trees. Final predictions
from the random forest are calculated by averaging predictions across the B regression trees. Averaging across many
trees that have different structures due to the randomness in the subset of predictor variables chosen is the regularization
in this method that limits overfitting and reduces prediction variance. Similarly to the penalized linear estimators, the
two hyperparameters, {B,L} can be chosen by means of cross-validation on the training set (see Appendix C.2 for
details).

GBT starts by fitting a shallow tree of depth d and calculating the residuals from this regression tree. Then, a second
shallow tree of depth d is fit on the residuals calculated from the first tree.4 This shallow tree is likely to have terrible
in-sample fit. To improve its fit, a second shallow tree of depth d is fit on the residuals calculated from the first tree.
Predicted values are then formed by adding the predicted values from the two trees, shrinking the predicted values
from the latter tree by a factor l ∈ (0,1) (regularization). This procedure is repeated B times, after which the predicted
value will be a combination of the predicted value from the first tree and the predicted values of the B−1 trees scaled
by l . The sequential growing of trees on (pseudo-)residuals from the previous trees makes the trees less correlated,
which is why averaging over trees limits overfitting. This method has three hyperparameters, {B,d,l}, which can be
chosen by means of cross-validation on the training set (see Appendix C.2 for details).

C.2 Formation of Forecasts

This appendix describes the formation of our econometric and econometrician + analyst forecasts, including details
on the implementation of our machine learning estimators. For expositional simplicity, we present the procedure as
pseudo-code. Additional details on the implementation and cross-validation procedures are described at the end of this
section.

Pseudo-code. To generate our econometric forecasts with elastic net at time t of pi, the pseudo-code is as follows.
For simplicity, denote as Xit the set of variables used in the econometric forecast and as X

e+a

it
= {Xit ,Ftpit+h} the set

of variables used in the econometrician + analyst forecast. We describe our procedure below for our econometric
forecasts, but an analogous procedure is used to form econometrician + analyst forecasts, where we replace Xit with
X

e+a

it
.

1. Start with the above dataset that contains Xit and pi and Fpi for each firm–year

2. Replace all missing values of variables measured at t with industry–time means and then fill all missing values
at t −1 with values from t and likewise for t −2

3. Create year and 2-digit SIC code dummies

4. Initialize s = 1995

3If all variables are considered at each split, the procedure of forming many trees across bootstrapped samples is called bagging (i.e., bootstrap aggregation).
4Thinking of this procedure as operating on residuals from the trees conveys most of the intuition for why boosting works but is a technically incorrect description.

Gradient-boosted trees are a particular form of boosting, where trees are successively fit on pseudo-residuals instead of residuals. Pseudo-residuals are defined as the
gradient of the objective function, evaluated at each data point.
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(a) Create a training dataset of observations indexed by i,s in the following set: {(i,t) ∶ t ∈ {s−5, ...,s−1}}
(b) Create a test dataset of observations indexed by i,t in the following set: {(i,t) ∶ t = s}
(c) Trim all independent variables in the training dataset based on 5 times the interquartile range

(d) Trim all independent variables in the test dataset based on 5 times the interquartile range, with the
interquartile range calculated from the training set

(e) Standardize all independent variables in the training set to have zero mean and unit variance

(f) Standardize all independent variables in the test based on means and variances calculated from the

training set

(g) Fit a machine learning estimator that is one of the following on the training set, using cross-validation as
described at the end of this section:

• Elastic net

• Random forest

• Gradient-boosted trees

(h) Generate forecasts on the test set. Calculating the MSE of these forecasts yields the MSEs for our three
forecasts for year s.

(i) Stop if s = 2021; otherwise, set s = s+1 and continue back to (a)

Cross-validation and implementation details by estimator. We use the following cross-validation and imple-
mentation procedures for each machine learning algorithm on our training sets for each model. All procedures are
implemented through the sklearn package in Python 3.9. We use default inputs to all sklearn functions men-
tioned below unless otherwise specified.

• Elastic net: We use 5-fold cross-validation on the training set, implemented with the ElasticNetCV function
in sklearn. We search over a grid of the parameter l1_ratio ∈ [0.1,0.99], which corresponds to the ratio of
the L1 to L2 penalty parameters.

• Random forest: We use 5-fold cross-validation on the training set, implemented with the GridSearchCV
function for RandomForestRegressor in sklearn. We set n_estimators to 1000, corresponding to the
number of decision trees in the ensemble, and search over the following grid for each parameter: max_depth
∈ [4,8], max_features ∈ [0.3,1], min_samples_leaf ∈ [1,5], and min_samples_splits ∈ [2,10]. We use
bootstrap samples for each decision tree. These parameter choices are similar to those in Gu et al. (2018) and
Hansen and Thimsen (2020).

• Gradient-boosted trees: We use 5-fold cross-validation on the training set, implemented using the GridSearchCV
function for GradientBoostingRegressor in sklearn. We search over the following grid for each parame-
ter: n_estimators ∈ [500,10000], max_depth ∈ [1,3], and learning_rate ∈ [0.001,0.1]. These parameter
choices are similar to those in Gu et al. (2018).

Hardware. Rolling estimation with repeated cross-validation is computationally intensive. We parallelize each
model estimation across 96 CPUs on the MIT SuperCloud server, with each estimation taking around 100 days of
CPU time.
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Appendix D. Interpretive Model for MSS Normalization

We write down here a simple model that gives a simple interpretation to the normalized MSE that we use throughout
the paper. Take the perspective of a hypothetical agent who seeks to allocate capital across firms. We assume that
investing ki dollars in firm i eventually generates cash flows piki − 1

2g k
2
i
. g is a measure of returns to scale (g =∞

corresponds to constant returns to scale). This agent is risk neutral and therefore maximizes the sum of all expected
cash flows:

Ph =�
i

�kiFpi− 1
2g

k
2
i
�

where the expectation is taken using the agent’s forecasting rule F . In this simple problem, capital allocation for firm
i is ki = gFpi. We compare this allocation to the perfect foresight allocation k

PF

i
= gpi. Trivially, the perfect foresight

allocation dominates all forecast-based allocations (including rational ones).

The expected cash flow loss relative to the perfect foresight allocation can then be written as:

PPF

h
−PF

h

PPF

h

= MSE
F

h

MSSh

, (16)

where MSE
F

h
is the MSE of the forecasting rule and MSSh is the realized mean of p2

i
. Thus, (16) shows that normal-

izing the mean squared errors by the mean squared EPS can be interpreted as the percent allocative loss relative to a
perfect foresight optimizer.
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Appendix E. Additional Details on GMM Estimation

In this appendix, we discuss the details of our GMM estimation based on the following moment conditions from
Proposition 2:

E �p∗
i

F
∗
i j
� = aQ,

E ��F∗
i j
�2� = a2Q+S,

E �F∗
i j

F
∗
ik
� j ≠ k� = a2Q.

We have now replaced the covariances with second moments given that all variables are mean zero. The computation
of these expectations requires further clarification, given that the third moment varies at a different level than the first
two.

We start with an i–t– j panel of individual analyst forecasts for each firm–year discussed in Section 1.1. Denote the
size of this dataset as N0. We then compute all possible interactions between the forecasts of the Jit analysts following
each firm, resulting in �Jit

2 � interactions per i–t. We use this set of interactions for each i–t to construct an i–t– j–k

panel that contains the forecasts of analysts j and k and their interaction for all possible j–k pairs. Denote the size of
this dataset as N1. We denote sample expectations taken on this i–t– j–k panel as Ê.

The score vector that we use in our GMM estimation (making t explicit for clarity) is:

m(p∗
it
,F∗

it j
,F∗

itk
;a,Q,S) =

�����

N1
N0

p∗
it

F
∗
it j
−aQ

1( j = k)N1
N0

F
∗
it j

F
∗
itk
−a2Q−S

1( j ≠ k) N1
N1−N0

F
∗
it j

F
∗
itk
−a2Q

�����
.

Note that there is reweighting based on N1 and N0. This reweighting ensures that taking the expectation of this score
vector on an i–t– j–k panel delivers the same result that we would obtain by calculating these moments on an i–t–
j panel. However, we cannot use an i–t– j panel for an estimation because performing GMM requires the sample
expectations of each moment condition to be calculated as the sample averages on the same dataset.

Our final step is to generate our parameter estimates by solving:

�â,Q̂, Ŝ� = argmin
a,Q,S

Ê �m(p∗
i
,F∗

it j
,F∗

itk
;a,Q,S)�′ Ê �m(p∗

i
,F∗

it j
,F∗

itk
;a,Q,S)� .

We solve this optimization problem using a global basinhopping algorithm implemented in SciPy. As we did with
our MSEs, we normalize by the average squared EPS (calculated on the basis of an unweighted average on the i–t– j

panel). We perform this estimation procedure separately for each h.

To calculate standard errors for the three parameters estimated via GMM, we perform a clustered bootstrap at the
firm level to account for autocorrelation of earnings and correlation of forecasts across analysts and then re-estimate
the GMM on each bootstrap sample.5 For D, we again compute standard errors using a firm-level bootstrap. These

5We use the bootstrap procedure from ?, in which the GMM objective function is not recentered before estimation on each bootstrap sample. This generates standard
errors with valid coverage (asymptotically) even under model misspecification.

A.11



standard errors are likely to be too tight because they ignore sampling uncertainty in the predictions generated from
our machine learning estimators, effectively treating them as raw data that is resampled directly to compute moments.
Here, we are constrained by the lack of asymptotic results that characterize the behavior of our statistical learning
estimators in large samples. This approach is standard in the literature (e.g., ?).6

Weighting in the Table 3 MSE decomposition. Because of the weighting in our GMM, our resulting parameter
estimates equally weight all firm–year–analyst observations (i.e., firms with more analysts will be weighted more).
However, the MSEs reported in Table 2 and Table 4 equally weight all firm–year observations because they vary only
at the firm–year level. To address this issue, we recompute the expectations required to calculate MSE

a, MSE
a, and 1

J

on the i–t– j panel used for GMM estimation when reporting their values in Table 3.

6We could in principle bootstrap the data and re-estimate our ML models, but this is too computationally intensive. Moreover, it is not clear that every estimator
satisfies the regularity conditions required for the bootstrap to be asymptotically valid (?).
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Appendix F. Afrouzi et al. (2021) Model

In this section, we apply the model proposed by Afrouzi et al. (2021) to our setting. We first briefly describe it,
referring the reader to Afrouzi et al. (2021) Section 5 for additional details. We then show that it qualitatively delivers
upward-sloping term structures of bias and noise but fails quantitatively in our setting for an intuitive reason.

F.1 Model Description

Consider the same setup as in Section 4.1, including Assumption 2. In addition, assume further that u
x

it
∼N �0,s2

u
�

and allow the mean of xit , denoted µ , to be different from zero. At time t, the analyst needs to form forecasts of
EPSit+h for h ≥ 1. The analyst costlessly observes xit−1, z

h

it
, and r . Importantly, the analyst does not know µ but has

the prior µ �xit−1 ∼N (xit−1,t). The analyst also knows the DGP for EPSit . Because x
h

it
and z

h

it
are orthogonal, we

assume that the analyst forms forecasts of EPSit+h by first forming optimal forecasts of xit+h−1 and z
h

it
individually and

then adding them together. Denote her forecasts by Ft . We assume a = 1 for simplicity to focus on forecasts of xit ,
which we show fail to match the data.

To form Ftxit+h, the analyst has access to two sources of information. First, the agent costlessly observes xit−1,
which is “at the top of her mind”. Secondly, the agent can retrieve additional information from past data to learn about
µ , but doing so is costly. She chooses the level of information acquisition to minimize the expected squared error of
her forecasts, subject to the cost of information retrieval. Formally, the analyst solves the following problem:

min
Sit

E � min
Ft xit+h

E �(Ftxit+h−xit+h)2 �Sit�+C(Sit)� , (17)

s.t. {xit−1} ∈ Sit ⊂ Sit , Sit = {s ∶ s ⊥ µ �xit−1,xit−2, ...} .
The solution to the inner maximization problem is Ftxit+h = E(xit+h�Sit). As shown in Afrouzi et al. (2021), the
assumption that uit is normally distributed implies that the outer maximization problem can be reduced to choosing a
belief prediction about µ , denoted t . Denote the solution to this problem as t∗(h).

To further characterize the solution to this problem, Afrouzi et al. (2021) assume that the cost of information
retrieval takes the following form:

Ct (St) ≡w exp(2ln(2) ⋅g ⋅ I(St ,µ � xit−1))−1
g

.

In this expression, I(⋅, ⋅) denotes Shannon mutual information, w ≥ 0 governs the overall cost of retrieval, and g ≥ 0
measures the convexity of the cost function in mutual information. Given this cost function, Afrouzi et al. (2021) show
that the choice of belief precision, t , that solves (17) is:

t∗(h) = t max

�����������
1,
���
�1−rh+1�2

wt

���
1

1+g �����������
. (18)
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This choice of t = t∗(h) implies that the analyst’s forecast is the following:

Ftxit+h = (1−rh+1)�1− t
t∗(h)�µ +�rh+1+(1−rh+1) t

t∗(h)�xit−1+hh

it
,

hh

it
∼N �0,(1−rh+1)2 1

t∗(h) �1−
t

t∗(h)�� .
Note that Ftxit+h is a random variable because of the expectation noise, hh

it
.

F.2 Term Structures of Bias and Noise

Now that we have characterized the analyst’s forecasts, we can determine the term structures of bias and noise in
this model.

Proposition F1. In the Afrouzi et al. (2021) model, the term structures of bias and noise are given by:

Dh = �(1−rh) t
t∗(h−1)�

2 s2
u

1−r2 , Sh = �1−rh�2 1
t∗(h−1) �1−

t
t∗(h−1)� .

Thus, the Afrouzi et al. (2021) model produces upward-sloping term structures of bias and noise.

Proposition F1 shows that noise in increasing with the horizon because of t∗(h−1) increasing with the horizon
(see eq. (18)). The intuition here is that at longer horizons, it is more useful to know the long-run mean, so the analyst
engages in more information retrieval. This greater retrieval provides the analyst with more noisy information, creating
large noise in her forecasts.

Additionally, the formula for Dh in Proposition F1 shows that bias is increasing with the horizon since t∗(h−1)
is increasing in h at a slower rate than 1−rh. This upward term structure of bias results from a combination of two
effects. On the one hand, the agent engages in more retrieval, moving her forecast closer to the conditional expectation.
On the other hand, the analyst still overweights xit−1 in her estimate of the long-run mean, and this overweighting is
magnified at longer horizons because the analyst’s forecast moves closer to her subjective expectation of the long-run
mean. This second effect dominates, generating an upward-sloping term structure of bias.

In sum, the Afrouzi et al. (2021) model generates upward-sloping term structures of bias and noise. We now discuss
how this model cannot quantitatively fit the data.

F.3 Quantitative Model Fit

The Afrouzi et al. (2021) model has 5 parameters: r , su, w , g , and t . The key endogenous parameter is t∗(h).
Rewriting the equation for Dh in Proposition F1, we obtain an expression for t∗(h) as a function of the bias at horizon
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h:

t∗(h−1)
t

= �1−rh�su�
Dh (1−r2) . (19)

Equation (19) is useful because it express t∗(h−1)
t , which is crucial to this model as a function of data moments that

we have already estimated (or can estimate).

We focus on annual forecast horizons and estimate r = 0.876 and su = 0.010 by regressing Ftpit+2 on Ftpit+1. Using
our values of Dh from Figure 2, we can evaluate (19) at each horizon:

�1−r1�su�
D1 (1−r2) ≈ 0.32,

�1−r2�su�
D2 (1−r2) ≈ 0.27,

�1−r3�su�
D3 (1−r2) ≈ 0.30.

By eq. (19), we obtain
t∗(1−1)

t
≈ 0.32,

t∗(2−1)
t

≈ 0.27,
t∗(3−1)

t
≈ 0.30.

However, this contradicts eq. (18), which shows that ∀h, t∗(h)
t ≥ 1. Thus, these numerical results illustrate that the

Afrouzi et al. (2021) model cannot match our data because it cannot generate public information bias.

The intuition of the quantitative failure of the Afrouzi et al. (2021) model in matching our data is the following.
From Proposition F1, the public information bias at horizon h is increasing in su: as su → 0, there will be no public
information bias because xit will be a deterministic process. In the data, we in fact find that su is quite low. However,
despite a low su, we still find substantial forecasting bias—the public information bias is so high that this model would
require the analyst to forget information to match this level of bias. The heart of this problem is that the model gives
the analyst access to xit−1, which is very close to xit+h because su is low. In other words, the fact that the analyst gets
to see the machine forecast from the last period, F

m

t−1EPSit = xit−1, gives her too much knowledge for her forecasts to
be as biased (and as noisy) as we find in the data.
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