INSURANCE VERSUS MORAL HAZARD IN INCOME-CONTINGENT STUDENT LOAN REPAYMENT

Tim de Silva Stanford GSB and SIEPR

December 2024

NBER ECONOMICS OF EDUCATION

Disclaimer: The results of these studies are based, in part, on Australian Business Registrar (ABR) data supplied by the Registrar to the ABS under A New Tax System (Australian Business Number) Act 1999 and tax data supplied by the ATO to the ABS under the Taxation Administration Act 1953. These require that such data is only used for the purpose of carrying out functions of the ABS. No individual information collected under the Census and Statistics Act 1905 is provided back to the Registrar or ATO for administrative or regulatory purposes. Any discussion of data limitations or weaknesses is in the context of using the data for statistical purposes, and is not related to the ability of the data to support the ABR or ATO's core operational requirements. Legislative requirements to ensure privacy and secrecy of these data have been followed. Source data are de-identified and so data about specific individuals or firms has not been viewed in conducting this analysis. In accordance with the Census and Statistics Act 1905, results have been treated Mnere necessary to ensure that they are not likely to enable identification of a particular oresnor organisation.

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt

- Standard contract in US
- Hard to
 discharge

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt

- Standard contract in US
- Hard to
 discharge

Equity

- Share of earnings
- Limited successful examples

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Income-Contingent Loan

Equity

- Standard contract in US
- Hard to
 discharge

 Used in US, UK, Australia, Canada

- Share of earnings
- Limited successful examples

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt	Income-Contingent Loan	Equity	
Standard	• Used in US, UK,	• Share of earnings	
contract in US	Australia, Canada	 Limited successful 	
Hard to		examples	
discharge	+ Insurance		
Borrowers bear most of risk	- Disince	 Disincentivize labor supply 	

-

US "crisis": 25%

default within 5

vears

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt	Income-Contingent Loan	Equity	
Standard	• Used in US, UK,	 Share of earnings 	
contract in US	Australia, Canada	 Limited successful 	
Hard to		examples	
discharge	+ Insurance		
Borrowers bear most of risk	 Disincentivize labor supply 		

- + Encourage investment & risk-taking
- Incentivize over-borrowing

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt	Income-Contingent Loan	Equity
Standard	• Used in US, UK,	• Share of earnings
contract in US	Australia, Canada	 Limited successful
Hard to		examples
discharge	+ Insurance	
Borrowers bear most of risk	 Disincentivize labor supply 	

- + Encourage investment & risk-taking
- Incentivize over-borrowing
- Adverse selection

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

	Debt	Income-Contingent	t Loan Equity
•	Standard contract in US	 Used in US, UK, Australia, Canada 	Share of earnings Limited successful
•	Hard to discharge	+	examples
	Borrowers bear most of risk	-	Disincentivize labor supply
This Paper: Insurance	This Paper: Insurance vs.	+ Moral Hazard	Encourage investment & risk-taking
		—	Incentivize over-borrowing
		_	Adverse selection

Conditional on ex-ante choices, how does income-contingent repayment affect **labor supply** and welfare?

Setting: Australian government's income-contingent student loan program

- Variation: discontinuities in repayment rates + policy change to these rates
- **Identification**: limited room for selection and ex-ante responses

2 Research design: bunching at discontinuities before and after policy change

• Data: universe of income tax returns + student debt balances

Conditional on ex-ante choices, how does income-contingent repayment affect labor supply and welfare?

- Setting: Australian government's income-contingent student loan program
- 2 Research design: bunching at discontinuities before and after policy change
- **3** Model: life cycle model with endogenous labor supply + uninsurable wage risk
 - Positive: translate responses into estimates of preference parameters
 - Normative: characterize optimal amount and form of income-contingent repayment

Conditional on ex-ante choices, how does income-contingent repayment affect labor supply and welfare?

- Setting: Australian government's income-contingent student loan program
- 2 Research design: bunching at discontinuities before and after policy change
- **3** Model: life cycle model with endogenous labor supply + uninsurable wage risk
 - · Positive: translate responses into estimates of preference parameters
 - Normative: characterize optimal amount and form of income-contingent repayment
 - Caveat: compute optimal contracts taking ex-ante choices as given \approx restructuring

MAIN RESULTS

- **1** Empirics: borrowers reduce labor supply to \downarrow income-contingent repayments
 - · Larger responses in occupations with more hourly flexibility
 - Responses increase with liquidity constraints and decrease with P(repayment)
- **2** Structural estimation: labor supply elasticity of **0.11** + adjustment frictions
- 3 Contract design: moral hazard reduces optimal amount of insurance
 - Fixed repayment \rightarrow optimal income-contingent loan $\Rightarrow \uparrow 1.3\%$ lifetime consumption
 - Forbearance + fixed repayment does worse because of slower repayment

MAIN RESULTS

- **1** Empirics: borrowers reduce labor supply to \downarrow income-contingent repayments
 - · Larger responses in occupations with more hourly flexibility
 - Responses increase with liquidity constraints and decrease with P(repayment)
- 2 Structural estimation: labor supply elasticity of 0.11 + adjustment frictions
- 3 Contract design: moral hazard reduces optimal amount of insurance
 - Fixed repayment \rightarrow optimal income-contingent loan $\Rightarrow \uparrow 1.3\%$ lifetime consumption
 - Forbearance + fixed repayment does worse because of slower repayment

Takeaway: income-contingent repayment creates moral hazard that affects contract design, but too small to justify fixed repayment

1 Institutional Background and Data

2 Labor Supply Responses to Income-Contingent Repayment

- **3** Life Cycle Model with Endogenous Labor Supply
- **4** Welfare Impact of Income-Contingent Repayment

5 Conclusion

1 Institutional Background and Data

2 Labor Supply Responses to Income-Contingent Repayment

8 Life Cycle Model with Endogenous Labor Supply

Welfare Impact of Income-Contingent Repayment

STUDENT LOANS IN AUSTRALIA: HELP

- Australian citizens eligible for government-provided student loans through HELP
- Initial debt = tuition government contribution upfront payment (avg. ≈ \$20K USD)
- Debt grows at CPI net of income-contingent repayments:

Repayment_{*it*} = HELP Rate_{*t*} (HELP Income_{*it*}) × HELP Income_{*it*} HELP Income_{*it*} = Labor Income_{*it*} + Capital Income_{*it*} - Deductions_{*it*}

- Repayments continue until remaining debt balance equals zero or death
 - X Cannot be cancelled or discharged in bankruptcy
 - Note: collection done from individual (not household) tax returns

WHY STUDY INCOME-CONTINGENT REPAYMENT IN AUSTRALIA?

- Benefit #1: only one government contract + no private market
 - Only choice is between borrowing and paying upfront; former heavily subsidized
 - Limited scope for adverse selection (or selection on moral hazard)
- Benefit #2: loans can only be used for tuition
 - Tuition is government-controlled at public universities (94% of enrollment)
 - ✓ Less room for **ex-ante** moral hazard from changes in borrowing
- Benefit #3: first nationwide provider of income-contingent loans in 1989
 - ✓ Borrowers likely **understand** structure of repayment

WHY STUDY INCOME-CONTINGENT REPAYMENT IN AUSTRALIA?

- Benefit #1: only one government contract + no private market
 - Only choice is between borrowing and paying upfront; former heavily subsidized
 - ✓ Limited scope for adverse selection (or selection on moral hazard)
- Benefit #2: loans can only be used for tuition
 - Tuition is government-controlled at public universities (94% of enrollment)
 - ✓ Less room for **ex-ante** moral hazard from changes in borrowing
- Benefit #3: first nationwide provider of income-contingent loans in 1989
 - ✓ Borrowers likely **understand** structure of repayment

Good setting to identify labor supply responses to income-contingent repayment

Differences from US

IDENTIFYING VARIATION: DISCONTINUITIES IN REPAYMENT RATES

IDENTIFYING VARIATION: POLICY CHANGE TO REPAYMENT RATES

Note: policy change applied to new and existing debtholders

REPAYMENT THRESHOLD INCREASES AVERAGE REPAYMENT RATE

Note: policy change applied to new and existing debtholders

REPAYMENT THRESHOLD INCREASES LIQUIDITY MORE THAN WEALTH

Note: policy change applied to new and existing debtholders

REPAYMENT THRESHOLD INCREASES LIQUIDITY MORE THAN WEALTH

Note: policy change applied to new and existing debtholders

REPAYMENT THRESHOLD INCREASES LIQUIDITY MORE THAN WEALTH

- 1 Universe of individual tax returns from Australian Tax Office (\sim US Form 1040)
- 2 Administrative HELP data: debt balances and repayments
- **3** 2016 Household Census: self-reported hours and mortgage + rent payments
- 4 Administrative retirement savings data: superannuation balances
- 6 HILDA: survey data on hours worked and asset holdings

- 1 Universe of individual tax returns from Australian Tax Office (\sim US Form 1040)
- 2 Administrative HELP data: debt balances and repayments
- **3** 2016 Household Census: self-reported hours and mortgage + rent payments
- 4 Administrative retirement savings data: superannuation balances
- 6 HILDA: survey data on hours worked and asset holdings
- Sample: \sim 4 million unique debtholders between ages 20-64 from 1991-2018
 - Mean HELP Income at age 26 = \$34K with 98% from labor income

Limitation: no information about borrowing (e.g., degree, institution)

Debt Repay

Summary Stats > Debt by Age

2 Labor Supply Responses to Income-Contingent Repayment

- S Life Cycle Model with Endogenous Labor Supply
- Welfare Impact of Income-Contingent Repayment

• Next: does bunching reflect labor supply or evasion? • Source • Non-Debt • Labor • vs Tax
BORROWERS BELOW REPAYMENT THRESHOLD WORK FEWER HOURS

In 2016, reduction is around 1 hour/week = 1.4 fewer weeks per year

BUNCHING INCREASES WITH DEBT BALANCES

Note: confidence intervals omitted due to small size

b Details

BUNCHING INCREASES WITH DEBT BALANCES

Note: confidence intervals omitted due to small size

Empirical facts:

Additional Results

- 1 Borrowers reduce income in response to income-contingent repayment
 - Reflects labor supply: "bunchers" work fewer hours and in more flexible occupations
- 2 Size of responses depends on
 - P(repayment): increases with debt, decreases with wage growth and peak •
 - Liquidity: increases with liquidity demands, decreases with retirement wealth •

Empirical facts:

Additional Results

- Borrowers reduce income in response to income-contingent repayment
 - Reflects labor supply: "bunchers" work fewer hours and in more flexible occupations
- 2 Size of responses depends on
 - P(repayment): increases with debt, decreases with wage growth and peak •
 - Liquidity: increases with liquidity demands, decreases with retirement wealth •

Questions for model:

- 1 How large are these labor supply responses quantitatively?
- 2 Do they imply the costs of income-contingent repayment exceed the benefits?

2 Labor Supply Responses to Income-Contingent Repayment

3 Life Cycle Model with Endogenous Labor Supply

Welfare Impact of Income-Contingent Repayment

Life cycle model with debt + incomplete markets + endogenous labor supply

 \Rightarrow demand for insurance

 \Rightarrow moral hazard

Life cycle model with debt + incomplete markets + endogenous labor supply

- Overlapping generations born at 22 with heterogeneous assets, wage, and debt
- From 22 to 64, individuals choose consumption, c_a , and labor supply, ℓ_a
 - Wage rate subject to idiosyncratic shocks (no aggregate risk, partial equilibrium)
 - Shocks are uninsurable: borrowing allowed up to age-dependent limit with interest
- After age 64, individuals retire and choose consumption ca

Life cycle model with debt + incomplete markets + endogenous labor supply

- Overlapping generations born at 22 with heterogeneous assets, wage, and debt
- From 22 to 64, individuals choose consumption, c_a , and labor supply, ℓ_a
 - Wage rate subject to idiosyncratic shocks (no aggregate risk, partial equilibrium)
 - Shocks are uninsurable: borrowing allowed up to age-dependent limit with interest
- After age 64, individuals retire and choose consumption ca

Government

- Revenues: progressive income taxes, debt repayments
- Expenses: means-tested unemployment benefits & retirement pension, initial debt

BUNCHING CONSISTENT WITH POSITIVE LABOR SUPPLY ELASTICITY

MASS ABOVE THRESHOLD INCONSISTENT WITH FRICTIONLESS MODEL

• Moving above to below threshold ⇒ more leisure and \$1400 more cash-on-hand

LABOR SUPPLY OPTIMIZATION FRICTIONS

- Choice of la subject to two optimization frictions to give mass above threshold
 - Similar to models of pricing Nakamura-Steinsson 2010 and refinancing Andersen et al. 2020
- 1 Canonical model of time-dependent adjustment (Calvo):
 - Fraction λ hit by shock and adjust *l_a*, other 1 − λ set *l_a* = *l_a*−1
 - E.g., inattention, arrival of opportunities to change hours/jobs
- 2 Canonical model of **state**-dependent adjustment (*sS*):
 - Individuals hit by Calvo shock incur utility cost f, if they choose $l_a \neq l_{a-1}$
 - E.g., real or psychological costs of changing hours/jobs

LABOR SUPPLY OPTIMIZATION FRICTIONS

- Choice of la subject to two optimization frictions to give mass above threshold
 - Similar to models of pricing Nakamura-Steinsson 2010 and refinancing Andersen et al. 2020
- 1 Canonical model of time-dependent adjustment (Calvo):
 - Fraction λ hit by shock and adjust I_a , other 1λ set $I_a = I_{a-1}$
 - E.g., inattention, arrival of opportunities to change hours/jobs
- 2 Canonical model of **state**-dependent adjustment (*sS*):
 - Individuals hit by Calvo shock incur utility cost f, if they choose $l_a \neq l_{a-1}$
 - E.g., real or psychological costs of changing hours/jobs
- Extension: add learning-by-doing to generate long-run cost of bunching

 $V_a(\mathbf{s}_a) =$

$$V_a(\mathbf{s}_a) = \max_{\substack{A_{a+1} \geq \underline{A}_{a+1},\ \ell_a}}$$

Þ

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge A_{a+1}, \\ \ell_{a}}} \left\{ \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta \left[m_{a} \mathbf{E}_{\mathbf{a}} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \right]^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1-\sigma}{1-\gamma}}$$

$$c_{a} + A_{a+1} + \underbrace{d(y_{a}, D_{a}, t)}_{\substack{\text{debt}\\\text{repayment}}} + \underbrace{\tau(y_{a})}_{\substack{\text{taxes + ui}}} = \underbrace{y_{a}}_{\substack{\text{labor}\\\text{income}}} + \underbrace{A_{a}R}_{\substack{\text{capital}\\\text{income}}}$$

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge A_{a+1}, \\ \ell_{a}}} \left\{ \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta \left[m_{a} \mathbf{E}_{\mathbf{a}} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \right]^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1-\sigma}{1-\gamma}}$$

$$c_a + A_{a+1} + d(y_a, D_a, t) + \tau(y_a) = y_a + A_a R$$

-

4

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge A_{a+1}, \\ \ell_{a}}} \left\{ \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta \left[m_{a} \mathbf{E}_{\mathbf{a}} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \right]^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1-\sigma}{1-\gamma}}$$

$$c_a + A_{a+1} + d(y_a, D_a, t) + \tau(y_a) = y_a + A_a R$$

$$y_a = \ell_a w_a$$
, $\log w_a = g_a + \theta_a + \epsilon_a$

$$\mathbf{s}_{m{a}} = ig(m{a} \ t \ m{A}_{m{a}} \ m{D}_{m{a}} \ m{ heta}_{m{a}} \ m{\epsilon}_{m{a}} \ m{\ell}_{m{a-1}} \ m{\omega}_{m{a}}ig)$$

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge A_{a+1}, \\ \ell_{a}}} \left\{ \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta \left[m_{a} \mathbf{E}_{a} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \right]^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1}{1-\sigma}}$$

$$c_{a} + A_{a+1} + d(y_{a}, D_{a}, t) + \tau(y_{a}) = y_{a} + A_{a}R$$

$$y_{a} = \ell_{a} w_{a}, \quad \log w_{a} = g_{a} + \theta_{a} + \epsilon_{a}$$

$$\mathbf{s}_{a}=ig(a \hspace{0.1in} t \hspace{0.1in} A_{a} \hspace{0.1in} D_{a} \hspace{0.1in} heta_{a} \hspace{0.1in} \epsilon_{a} \hspace{0.1in} \ell_{a-1} \hspace{0.1in} \omega_{a} ig)$$

• *a* = age

• *t* = year to keep track of policy change

Þ

4

1 ~

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge \underline{A}_{a+1}, \\ \ell_{a}}} \left\{ \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta \left[m_{a} \mathbf{E}_{a} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \right]^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1-\sigma}{1-\gamma}}$$

$$c_{a} + A_{a+1} + d(y_{a}, D_{a}, t) + \tau(y_{a}) = y_{a} + A_{a}R$$

$$y_{a} = \ell_{a} w_{a}, \quad \log w_{a} = g_{a} + \theta_{a} + \epsilon_{a}$$

$$\mathbf{s}_{a} = egin{pmatrix} \mathbf{a} & t & A_{a} & D_{a} & heta_{a} & \epsilon_{a} & \ell_{a-1} & \omega_{a} \end{pmatrix}$$

• *A_a* = savings from previous period

•
$$D_a = \text{debt} = R_d D_{a-1} - d(y_{a-1}, D_{a-1}, t)$$

Þ

1

1 ~

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge A_{a+1}, \\ \ell_{a}}} \left\{ \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta \left[m_{a} \mathbf{E}_{\mathbf{a}} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \right]^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1}{1-\sigma}}$$

$$c_{a} + A_{a+1} + d(y_{a}, D_{a}, t) + \tau(y_{a}) = y_{a} + A_{a}R$$

$$y_{a} = \ell_{a} w_{a}, \quad \log w_{a} = g_{a} + \theta_{a} + \epsilon_{a}$$

$$\mathbf{s}_a = \begin{pmatrix} a & t & A_a & D_a & \theta_a & \epsilon_a & \ell_{a-1} & \omega_a \end{pmatrix}$$

•
$$\theta_a$$
 = permanent income = $\rho \theta_{a-1} + \nu_a$ $\nu_a \sim N(0, \sigma_{\nu}^2)$

•
$$\epsilon_a$$
 = transitory shock ~ $N(0, \sigma_{\epsilon}^2)$

1 ~

н

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge A_{a+1}, \\ \ell_{a}}} \left\{ \begin{bmatrix} c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \end{bmatrix}^{1-\sigma} + \beta \begin{bmatrix} m_{a} \mathbf{E}_{\mathbf{a}} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \end{bmatrix}^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1-\sigma}{1-\gamma}}$$

$$c_{a} + A_{a+1} + d(y_{a}, D_{a}, t) + \tau(y_{a}) = y_{a} + A_{a}R$$

$$y_{a} = \ell_{a} w_{a}, \quad \log w_{a} = g_{a} + \theta_{a} + \epsilon_{a}$$

$$\mathbf{s}_{a} = \begin{pmatrix} a \ t \ A_{a} \ D_{a} \ \theta_{a} \ \epsilon_{a} \ \ell_{a-1} \ \omega_{a} \end{pmatrix}$$

• θ_a = permanent income = $\rho \theta_{a-1} + \nu_a + \alpha \log \ell_{a-1}$ $\nu_a \sim N(0, \sigma_{\nu}^2)$

• ϵ_a = transitory shock ~ $N(0, \sigma_{\epsilon}^2)$ Extension: learning-by-doing

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge A_{a+1}, \\ \ell_{a}}} \left\{ \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta \left[m_{a} \mathbf{E}_{\mathbf{a}} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \right]^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1-\sigma}{1-\sigma}}$$

$$c_{a} + A_{a+1} + d(y_{a}, D_{a}, t) + \tau(y_{a}) = y_{a} + A_{a}R$$

$$y_{a} = \ell_{a} w_{a}, \quad \log w_{a} = g_{a} + \theta_{a} + \epsilon_{a}$$

$$\mathbf{s}_{a} = \begin{pmatrix} a \ t \ A_{a} \ D_{a} \ \theta_{a} \ \epsilon_{a} \ \ell_{a-1} \ \omega_{a} \end{pmatrix}$$

- ℓ_{a-1} = labor supply from previous period
- ω_a = Calvo shock that determines whether ℓ_a can be adjusted ~ Bernoulli(λ)

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \ge A_{a+1}, \\ \ell_{a}}} \left\{ \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta \left[m_{a} \mathbf{E}_{\mathbf{a}} \left(V_{a+1}(\mathbf{s}_{a+1})^{1-\gamma} \right) \right]^{\frac{1-\sigma}{1-\gamma}} \right\}^{\frac{1-\sigma}{1-\gamma}}$$

$$c_a + A_{a+1} + d(y_a, D_a, t) + \tau(y_a) = y_a + A_a R$$

$$y_a = \ell_a w_a$$
, $\log w_a = g_a + \theta_a + \epsilon_a$

$$\mathbf{s}_{a}=egin{pmatrix} a & t & oldsymbol{A}_{a} & oldsymbol{D}_{a} & oldsymbol{ heta}_{a} & oldsymbol{ heta}_{a-1} & \omega_{a} \end{pmatrix}$$

- Sources of ex-ante heterogeneity:
 - θ_0 = initial permanent income ~ $N(0, \sigma_i^2)$
 - D_0 = initial debt, A_0 = initial assets

.

Parameters = (

- Estimation via SMM with 47 moments + 14 parameters
 - Find parameters that minimize % difference between data & model moments
- Simulated policy change: unanticipated change in HELP formula at t = 2005

SIMULATED METHOD OF MOMENTS: IDENTIFICATION

Parameters =
$$\begin{pmatrix} \overrightarrow{\phi} & \overrightarrow{f} & \lambda \end{pmatrix}$$

- Labor supply elasticity: identified by bunching below repayment threshold
- Frictions: identified by mass above repayment threshold

SIMULATED METHOD OF MOMENTS: IDENTIFICATION

Parameters =
$$\begin{pmatrix} abor supply \\ \phi & f & \lambda \end{pmatrix}$$

- Labor supply elasticity: identified by bunching below repayment threshold
- Frictions: identified by mass above repayment threshold
- Separate identification of frictions
 - Intuition: with f = 0, decision to bunch depends on Calvo shock not incentives
 - Moments: bunching at **0.5%** threshold

SIMULATED METHOD OF MOMENTS: IDENTIFICATION

- Labor supply elasticity: identified by bunching below repayment threshold
- Frictions: identified by mass above repayment threshold
- Separate identification of frictions
 - Intuition: with f = 0, decision to bunch depends on Calvo shock not incentives

Other Parameters
 First-Stage Estimation

- Moments: bunching at 0.5% threshold
- No panel data on hours ⇒ wage profile & wage risk estimated jointly

Elasticities > SMM Objective

Parameter		Estimation Baseline		
Fixed adjustment cost	f	\$377		
Calvo parameter	λ	0.183		
Time discount factor	β	0.973		
Labor supply scaling parameter	κ	0.560		
Wage profile parameters	δ_0	8.922		
	δ_1	0.073		
	δ_2	-0.001		
	δ_0^E	-0.487		
	δ_1^E	0.020		
Persistence of permanent shock	ρ	0.930		
Standard deviation of permanent shock	$\sigma_{ u}$	0.236		
Standard deviation of transitory shock	σ_{ϵ}	0.130		
Standard deviation of individual FE	σ_i	0.599		

		Estimation		
Parameter		Baseline	No Frictions	
Labor supply elasticity	ϕ	0.114	0.005	
Fixed adjustment cost	f	\$377	•	
Calvo parameter	λ	0.183	•	
Time discount factor	β	0.973	0.996	
Labor supply scaling parameter	κ	0.560	0.030	
Wage profile parameters	δ_0	8.922	9.862	
	δ_1	0.073	0.111	
	δ_2	-0.001	-0.002	
	δ_0^E	-0.487	-0.294	
	δ_1^E	0.020	0.032	
Persistence of permanent shock	ρ	0.930	0.914	
Standard deviation of permanent shock	$\sigma_{ u}$	0.236	0.076	
Standard deviation of transitory shock	σ_{ϵ}	0.130	0.504	
Standard deviation of individual FE	σ_i	0.599	0.101	

		Estimation	
	Baseline	No Frictions	LBD
ϕ	0.114	0.005	0.082
f	\$377		\$762
λ	0.183		0.346
β	0.973	0.996	0.951
κ	0.560	0.030	1.242
δ_0	8.922	9.862	9.197
δ_1	0.073	0.111	0.070
δ_2	-0.001	-0.002	-0.001
δ_0^E	-0.487	-0.294	-0.480
δ_1^E	0.020	0.032	0.018
ρ	0.930	0.914	0.889
$\sigma_{ u}$	0.236	0.076	0.288
σ_{ϵ}	0.130	0.504	0.064
σ_i	0.599	0.101	0.625
	$ \begin{array}{c} \phi \\ f \\ \lambda \\ \beta \\ \kappa \\ \delta_0 \\ \delta_1 \\ \delta_2 \\ \delta_0 \\ \delta_1 \\ \rho \\ \sigma_{\nu} \\ \sigma_{\epsilon} \\ \sigma_i \end{array} $	$\begin{array}{c c} & \\ \hline \phi & 0.114 \\ f & \$377 \\ \lambda & 0.183 \\ \beta & 0.973 \\ \kappa & 0.560 \\ \delta_0 & 8.922 \\ \delta_1 & 0.073 \\ \delta_2 & -0.001 \\ \delta_0^E & -0.487 \\ \delta_1^E & 0.020 \\ \rho & 0.930 \\ \sigma_{\nu} & 0.236 \\ \sigma_{\epsilon} & 0.130 \\ \sigma_{j} & 0.599 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Comparison with Literature All Results with SE
MODEL FIT: BUNCHING BEFORE AND AFTER POLICY CHANGE

Model Fit: Heterogeneity Model Fit: Other Moments

MODEL FIT: BUNCHING BEFORE AND AFTER POLICY CHANGE

Model Fit: Heterogeneity Model Fit: Other Moments

2 Labor Supply Responses to Income-Contingent Repayment

8 Life Cycle Model with Endogenous Labor Supply

4 Welfare Impact of Income-Contingent Repayment

- Perspective: social planner that maximizes borrower welfare with one contract
 - Problem faced by governments with one contract (e.g., Australia, UK)
 - · Contract is subsidized with zero interest rate, prices held fixed
 - Caveat: borrowing and education choices held fixed \approx debt restructuring

• **Approach**: solve constrained-planner's problem:

$$\max \mathbf{E}_0 \left(V_{a_0}^{1-\gamma} \right)^{\frac{1}{1-\gamma}}$$

(behind the "veil-of-ignorance")

(2)

• Approach: solve constrained-planner's problem:

$$\max_{\psi, K} \mathbf{E}_0 \left(V_{a_0}^{1-\gamma} \right)^{\frac{1}{1-\gamma}}$$

subject to: (à la Ramsey, not Mirrlees)

Repayments
$$_{a}=\psist \max\left\{ y_{a}-K,0
ight\}
ight.$$
 (US/UK) (1)

(2)

• Approach: solve constrained-planner's problem:

$$\max_{\psi,K} \mathbf{E}_0 \left(V_{a_0}^{1-\gamma} \right)^{\frac{1}{1-\gamma}}$$

subject to:

$$\mathsf{Repayments}_{a} = \min\left\{\psi \ast \max\left\{y_{a} - K, 0\right\}, D_{a}\right\}$$
(1)

(2)

• Approach: solve constrained-planner's problem:

$$\max_{\psi,K} \mathbf{E}_0 \left(V_{a_0}^{1-\gamma} \right)^{\frac{1}{1-\gamma}}$$

subject to:

$$\operatorname{\mathsf{Repayments}}_{a} = \min\left\{\psi \ast \max\left\{y_{a} - K, 0\right\}, D_{a}\right\}$$
(1)

$$\mathcal{G} \equiv \mathbf{E}_0 \sum_{a=a_0}^{a_T} \frac{\text{Repayments}_a + \text{Taxes}_a - \text{Transfers}_a}{\mathcal{R}_a}$$
(2)

• Approach: solve constrained-planner's problem:

$$\max_{\psi,K} \mathbf{E}_0 \left(V_{a_0}^{1-\gamma} \right)^{\frac{1}{1-\gamma}}$$

subject to:

$$\mathsf{Repayments}_{a} = \min\left\{\psi \ast \max\left\{y_{a} - K, 0\right\}, D_{a}\right\}$$
(1)

$$\mathcal{G} \equiv \mathbf{E}_0 \sum_{a=a_0}^{a_7} \frac{\text{Repayments}_a + \text{Taxes}_a - \text{Transfers}_a}{\mathcal{R}_a} \ge \mathcal{G}_{25\text{-Year Fixed}}$$
(2)

SOLUTION TO CONSTRAINED-PLANNER'S PROBLEM

SOLUTION TO CONSTRAINED-PLANNER'S PROBLEM

CONSTRAINED-OPTIMUM = 1.3% INCREASE IN LIFETIME CONSUMPTION

Income-Contingent Loan

CONSTRAINED-OPTIMUM = 1.3% INCREASE IN LIFETIME CONSUMPTION

Income-Contingent Loan

Welfare Gain is Positive as Long as $\phi < 0.37$

NEXT: ICLS VS. OTHER CONSTRAINED-OPTIMAL CONTRACTS...

JUST PROVIDING FORBEARANCE GIVES SMALLER GAINS

· Benefit of income-contingent loan: accelerate payments from high-income

ADDING FORGIVENESS REDUCES WELFARE GAINS

• Costs of forgiveness: transfer repayments to young and finite repayment horizon

EQUITY CONTRACT GIVES LARGER GAINS

• Benefit of equity: uncapped payments from high-income \Rightarrow 70% higher threshold

EQUITY CONTRACT GIVES LARGER GAINS, BUT MORE DISPERSED

• Cost of equity: more likely to cause losses from ex-ante responses and selection

EQUITY CONTRACT GIVES LARGER GAINS, BUT MORE DISPERSED

• Cost of equity: more likely to cause losses from ex-ante responses and selection

Institutional Background and Data

2 Labor Supply Responses to Income-Contingent Repayment

S Life Cycle Model with Endogenous Labor Supply

Welfare Impact of Income-Contingent Repayment

5 Conclusion

THE BIG PICTURE

- US "student debt crisis": 25% of borrowers default within 5 years of graduation
 - Possible solution = change contracts to be income-contingent (e.g., SAVE)
- This paper: evidence + model to calibrate the effects of debt restructuring
 - Ex-post moral hazard is not a reason to avoid income-contingent contracts
 - 2 Among these contracts, income-contingent loans are relatively effective and robust
- Open question: effects of income-contingent contracts on ex-ante choices?
- Broader question: is more state-contingent repayment useful for other liabilities?
 - HHs: government-provided shared-appreciation mortgages (UK, Canada)
 - Firms: revenue-based financing

THANK YOU!

www.timdesilva.me

tdesilva@stanford.edu

APPENDIX

START OF APPENDIX

Tim de Silva, Stanford

ILLUSTRATION OF DIFFERENT REPAYMENT CONTRACTS

Income

RELATED LITERATURE & CONTRIBUTIONS

- 1 Financing of human capital Bovenberg-Jacobs 2005, Lochner-Monge-Naranjo 2016, Stantcheva 2017
- 2 Empirical effects of student loans
 - ↑ Debt ⇒ ↑ delinquencies, ↓ mobility, ↓ income Di Maggio et al. 2021, ↓ homeownership Mezza et al. 2020, △ occupation Luo-Mongey 2019, △ major Hampole 2022
 - Income-contingent loans $\Rightarrow \downarrow$ delinquencies Herbst 2023, \downarrow defaults Mueller-Yannelis 2019

RELATED LITERATURE & CONTRIBUTIONS

- 1 Financing of human capital Bovenberg-Jacobs 2005, Lochner-Monge-Naranjo 2016, Stantcheva 2017
- 2 Empirical effects of student loans
 - ↑ Debt ⇒ ↑ delinquencies, ↓ mobility, ↓ income Di Maggio et al. 2021, ↓ homeownership Mezza et al. 2020, △ occupation Luo-Mongey 2019, △ major Hampole 2022
 - Income-contingent loans ⇒ ↓ delinquencies Herbst 2023, ↓ defaults Mueller-Yannelis 2019

Contributions:

- Empirical evidence of moral hazard from income-contingent repayment Britton-Gruber 2020, Herbst et al. 2023
- 2 Structural model of labor supply that replicates these responses
 - ✓ Choice of labor supply is **dynamic**: income-contingent repayment + frictions
- 3 Quantification of how moral hazard affects optimal contract design

- Insurance vs. moral hazard in social insurance: UI Gruber 1997, Chetty 2008, Ganong-Noel 2019, HH bankruptcy Dobbie-Song 2015, Indarte 2023, health insurance Einav et al. 2015
- Mortgages with more risk-sharing Shiller 2004, Caplin et al. 2007, Mian-Sufi 2014, Piskorski-Seru 2018, Hartman-Glaser-Hébert 2020, Greenwald et al. 2021, Campbell et al. 2021, Benetton et al. 2022
- **5** Bunching at discontinuities in tax rates Saez 2010, Chetty et al. 2011, Kleven-Waseem 2013
- 6 Determinants of labor supply Blundell-MaCurdy 1999, Keane 2011, Chetty 2012, ...

SURVEY OF THRESHOLD LOCATION

REPAYMENT STATUS OF US STUDENT LOANS

PREVALENCE OF GOVERNMENT-PROVIDED INCOME-CONTINGENT LOANS

- Countries with **universal** adoption: Australia (1989), New Zealand (1991), UK (1998), Hungary (2001)
- Countries with partial adoption: US (1994), Thailand (2006), South Korea (2009), Brazil (2016), the Netherlands (2016), Japan (2017), Canada (2017), Colombia (2023)
- Countries considering adoption (as of 2022): Chile, France, Malaysia, Ireland

Source: Chapman-Dearden 2022

- HELP Income = Taxable Income + Fringe Benefits + Foreign Employment Income + Investment or Property Losses + Employer Super Contributions
- Labor Income = Salary/Wages + Allowances & Tips + Self-Employment Income
- Capital Income = Interest and Dividend Income + Annuity Income + Capital Gains + Rental Income + Managed Trust Income
- Net Deductions = Labor Income + Capital Income HELP Income

AU–US DIFFERENCES MOST LIKELY TO AFFECT CONTRACT DESIGN

- 1 More debt in US due to higher tuition, longer degrees, and discretionary items
 - Larger demand for insurance in US, but also more moral hazard
 - Discretionary borrowing in US \Rightarrow possible ex-ante moral hazard
- 2 Active private market in US cream-skims high-income borrowers Bachas 2019
 - Amount of insurance that can be provided might be lower in US
- 3 Student loans more subsidized in Australia than US
 - Different moral hazard in US (if there is selection on moral hazard) Karlan-Zinman 2009
- 4 Tuition and enrollment caps at public universities in Australia
 - Supply-side responses could increase fiscal cost of ICLs in US Kargar-Mann 2023
 - Note: I compare contracts with identical subsidy

DIFFERENCES BETWEEN AUSTRALIA AND US: STATISTICS

Feature of Environment	Australia	US
Cost of Higher Education		
Public Undergraduate Tuition Cost	\$2,700-\$10,100 USD per year for CSPs	\$9,500 USD per year for 4-Year In-State \$39,000 USD per year for 4- Year Private Nonprofit
Total Cost of Attendance	\$15,850 USD per year	\$22,700 USD per year
Prevalence of Scholarships	Rare	Common
Initial Student Debt Borrowed	\$8,100-\$30,300 USD	\$51,800 USD (Average)
Student Population		
% of Population with Undergraduate Degree	38%	32%
% of Undergraduates at Private Universities	6%	26%
% of Undergraduates from Abroad	16%	5%
% of Current Students Employed	50%	40%
Income Distribution and Taxes/Transfers		
Median Personal Income	\$33,500 USD	\$40,500 USD
Poverty Line for Single Individual	\$16,200 USD	\$14,580 USD
Gini Coefficient for Income	0.32	0.38
Marginal Tax Rate at Average Income	41%	41%
Heathcote et al. (2017) Tax Progressivity	0.133	0.184
1-Month Individual UI Replacement Rate	23%	35%
Union Membership Rate	13.7%	10.3%

MARGINAL HELP REPAYMENT RATES ON 100 AUD

NEWS ARTICLE: POLICY CHANGE

Ease HECS burden on students, say universities

Kate Marshall

Save

A Share

Australian students owing more than \$9 billion of debts to the federal government should be spared financial heartache under a proposal to lift the income threshold for repayments, the Australian Vice-Chancellors Committee said vesterday.

MORE BUNCHING IN OCCUPATIONS WITH GREATER HOURLY FLEXIBILITY

Tim de Silva, Stanford

OCCCUPATION-SPECIFIC INCOME PROFILES RELATIVE TO THRESHOLDS

Back: Policy

Back: Hours

A Back: Table

SUMMARY STATISTICS

	Non-Debtholders (1)	Debtholders (2)	
Demographics			
Age	41.1	29.5	
Female	0.46	0.60	
Wage-Earner	0.85	0.91	
Income Totals (in 2005 AUD)			
Taxable Income	37,695	27,796	
HELP Income	38,756	28,586	
Income Components (in 2005 AUD)			
Salary & Wages	32,415	26,068	
Labor Income	35,480	27,136	
Interest & Dividend Income	726	242	
Capital Income	1,221	324	
Net Deductions	-1,548	-1,099	
HELP Variables			
HELP Debt (in 2005 AUD)		10,830	
HELP Payment (in 2005 AUD)		991	
HELP Debt at Age 26 (in 2005 AUD)		13,156	
HELP Payment at Age 26 (in 2005 AUD)		1,305	
HELP Income < 0% Threshold	0.50	0.65	
HELP Income < 2004 0% Threshold	0.37	0.51	
HELP Income < 2005 0% Threshold	0.52	0.67	
Number of Unique Individuals	19,484,517	4,013,382	
Number of Individual-Year Observations	247,118,713	27,316,037	

DEBT BALANCES BY AGE

DEBT BALANCES BY AGE: INDIVIDUALS WITH POSITIVE DEBT AT AGE 22

NEW BUNCHING COMES FROM BETWEEN OLD AND NEW THRESHOLDS

NO BUNCHING AT REPAYMENT THRESHOLD FOR NON-DEBTHOLDERS

BUNCHING IN LABOR INCOME = 83% OF BUNCHING IN HELP INCOME

1.10% 1.20% b = 0.06b = 0.051.10% 1.00% 1.00% 0.90% % of Individuals % of Individuals 0.90% 0.80% 0.80% 0.70% 0.70% 0.60% 0.60% 0.50% 0.50% 30.000 20.000 25.000 35.000 40.000 45.000 50.000 20.000 25,000 30,000 35,000 40.000 45.000 50.000 HELP Income Relative to 0% Threshold Labor Income Relative to 0% Threshold

HELP Income

Labor Income

BUNCHING AT THRESHOLD IS LARGER THAN AT TAX KINK: 2016

ALTERNATIVE MEASURE OF HOURLY FLEXIBILITY

BUNCHING UNCORRELATED WITH MEASURE OF EVASION

Easier to misreport non-salary and wage income Paetzold-Winner 2016, Slemrod 2019

BUNCHING UNCORRELATED WITH MEASURE OF EVASION

Easier to misreport non-salary and wage income Paetzold-Winner 2016, Slemrod 2019

	Ratio of Debtholders Below to Above Threshold						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Hourly Flexibility: SD of Changes in Log Hours	1.30				1.30	1.05	0.50
	(0.35)				(0.35)	(0.28)	(0.23)
Evasion: Share with Non-Wage Income	•	-0.20			-0.02	-0.17	0.05
	•	(0.30)	•	•	(0.30)	(0.30)	(0.25)
Income Slope: Mean Wage at 45 / Mean Wage at 26	•	•	-0.53	•		-0.40	
			(0.10)			(0.12)	
Income Peak: Maximum Wage in Occupation Profile			•	-0.48		•	-0.40
	•			(0.06)		•	(0.07)
R ²	0.34	0.01	0.23	0.58	0.34	0.46	0.62
Number of Occupations	43	43	43	43	43	43	43

▶ Profiles

Back: Hours
A Back: Slope
A Back: Summary

COMPUTATION OF BUNCHING STATISTIC

- Bunching statistic calculated as in prior literature Chetty et al. 2011, Kleven-Waseem 2013
 - **1** Fit 5-piece spline leaving out [32,500, 335,000 + X] \Rightarrow counterfactual density
 - 2 Iterate and choose X so that counterfactual density integrates to 1

 $b = \frac{\text{observed mass in [\$32,500, \$35,000]}}{\text{counterfactual mass in [\$32,500, \$35,000]}} - 1$

• $b = 0.1 \Rightarrow 10\%$ more people below threshold than would be absent discontinuity

- Note: normalization makes b comparable across distributions of different shapes
- Sample: All debtholders age 20 to 64 pooled across 2005 to 2018
 - Income deflated to 2005 so 0% threshold constant in real terms at **\$35,000**

3

BUNCHING DECREASES WITH EXPECTED WAGE GROWTH

BUNCHING INCREASES WITH PROXIES FOR LIQUIDITY CONSTRAINTS

Retirement Savings

House Prices

BUNCHING DECREASES WITH SUPERANNUATION BALANCES

BUNCHING HETEROGENEITY BY SUPER WEALTH: AGES 20-29

LESS BUNCHING IN REGIONS WITH MORE HOUSING WEALTH

Additional Empirical Results

- Persistence of bunching below threshold lasts around three years
- 2 Long-run: income of "bunchers" similar to "non-bunchers" after two years •
- 8 No discontinuity in probability of switching occupations around threshold •
- 4 Limited heterogeneity in bunching with household demographics
 - Caveat: no extensive margin responses, which can vary across groups Saez et al. 2012
- 5 Limited evidence of bunching coming from firm responses (as in Chetty et al. 2011) •
- 6 Additional tests for evasion:
 - Bunching present in salary and wages, which is harder to misreport Slemrod 2019 •
 - Minimal difference in bunching based on filing type
 - Bunching declines by only 4% when dropping self-employed
 - Borrowers are median income ⇒ less avoidance opportunities Slemrod-Yitzhaki 2002

PERSISTENCE OF BUNCHING LASTS AROUND THREE YEARS

LIMITED EVIDENCE OF DYNAMIC COST TO BUNCHING

LITTLE DIFFERENCE IN DISTRIBUTION OF FUTURE INCOME

I Back

NO DISCONTINUITY IN THE PROBABILITY OF SWITCHING OCCUPATIONS

DEMOGRAPHIC HETEROGENEITY IN BUNCHING

Sample	Estimated Bunching Statistic: b		
Non-Electronic Filers	0.086		
Electronic Filers	0.082		
Wage-Earners	0.081		
Entrepreneurs (Not Wage-Earners)	0.117		
Females	0.081		
Males	0.083		
No Dependent Children	0.086		
Has Dependent Children	0.077		
No Spouse	0.085		
Has Spouse	0.081		
Full Sample	0.084		

CHETTY ET AL. (2011) TEST OF FIRM RESPONSES

Chetty et al: Teacher Wages

Borrower Labor Income

BUNCHING IN DISTRIBUTION OF SALARY AND WAGES

HELP Income

Salary and Wages

Tim de Silva, Stanford

FIRST-STAGE CALIBRATION

- Interest rates and borrowing:
 - Interest rate = 1.84%, borrowing rate = CC rate, debt interest rate = 0%
 - Borrowing limit = average CC limit by age
- **Demographics**: cohort birth rates and mortality risk taken from life tables
 - Consumption adjusted for equivalence scale using HH size (Lusardi et al. 2017)
- · Government: use exact (non-smooth) formulas provided by tax office
- Initial conditions: assets and debt distributions taken from data at age 22
- Baseline RRA and EIS: $\gamma = \frac{1}{\sigma} = 2.23$ (Choukhmane-de Silva 2023)
 - Welfare analysis: consider alternative values + preference for early resolution

FIRST-STAGE CALIBRATION

- Interest rates and borrowing:
 - Interest rate = 1.84%, borrowing rate = CC rate, debt interest rate = 0%
 - Borrowing limit = average CC limit by age
- Demographics: cohort birth rates and mortality risk taken from life tables
 - Consumption adjusted for equivalence scale using HH size (Lusardi et al. 2017)
- · Government: use exact (non-smooth) formulas provided by tax office
- Initial conditions: assets and debt distributions taken from data at age 22
- Baseline RRA and EIS: $\gamma = \frac{1}{\sigma} = 2.23$ (Choukhmane-de Silva 2023)
 - Welfare analysis: consider alternative values + preference for early resolution
- Learning-by-doing extension: $\alpha = 0.24$ (median value from Best-Kleven 2013)

	ϕ	f	λ
Mass Below 2004 Threshold	0.08	-0.16	0.21
Mass Above 2004 Threshold	-0.03	0.09	-0.13
Mass Below 2005 Threshold	0.12	-0.16	0.28
Mass Above 2005 Threshold	-0.04	0.09	-0.19
Ratio 2005 0%	0.22	-0.34	0.64
Ratio 2005 0.5%	0.13	-0.12	0.16
Ratio 2005 0%, Q1 Debt	0.22	-0.34	0.37
Ratio 2005 0%, Q4 Debt	0.20	-0.33	0.82

SMM OBJECTIVE IS SMOOTH IN LABOR SUPPLY PARAMETERS

SIMULATED MINIMUM DISTANCE: OTHER MOMENTS

$$\mathsf{Parameters} = \left(\underbrace{\phi \quad f \quad \lambda \quad \kappa \quad \beta}_{\mathsf{preferences}} \quad \underbrace{\delta_0 \quad \delta_1 \quad \delta_2 \quad \delta_0^\mathsf{E} \quad \delta_1^\mathsf{E}}_{\mathsf{wage profile}} \quad \underbrace{\rho \quad \sigma_\nu \quad \sigma_\epsilon \quad \sigma_i}_{\mathsf{wage risk}} \right)$$

- Age profiles of salary & wages ⇒ wage profile parameters
- Moments in Guvenen et al. 2022 ⇒ wage risk parameters
- Average capital income at ages $40-44 \Rightarrow \beta$
- Average labor supply $\Rightarrow \kappa$

COMPARISON WITH EXISTING LITERATURE ON LABOR SUPPLY (1/2)

Source: intensive-margin Hicks and Frisch elasticities reported in Keane (2011) and Chetty (2012)

Reasons why elasticity may be smaller:

- **1** Different sample: college graduates with less flexibility and further from $y_t = w_t l_t$
- 2 Elasticity is local to threshold: no high-income individuals Gruber-Saez 2002
- 3 Bunching does not identify extensive margin responses Saez et al. 2012

Contributions:

- **1** Empirical characterization of responses to income-contingent repayment
 - ℓ_t of indebted households responds to liquidity not wealth, like c_t Ganong-Noel 2020
- **2** Dynamic model of labor supply with time- and state-dependent adjustment
 - ✓ First paper (to my knowledge) to explicitly estimate different types of frictions

FULL ESTIMATION RESULTS

		Estimation						
Parameter		(1)	(2)	(3)	(4)	(5)	(6)	(7)
Labor supply elasticity	ϕ	0.114	0.005	0.188	0.053	0.082	0.111	0.067
Adjustment cost	f	\$377 (\$13)	\$0	\$2278 (\$21)	\$0	\$762 (\$10)	\$513 (\$19)	\$848 (\$11)
Calvo probability	λ	0.183	1	1	0.147	0.346	0.191 (.003)	0.266
Scaling parameter	κ	0.560	0.030	0.059	0.510	1.242	0.593	0.448
Time discount factor	β	0.973	0.996	0.972 (.001)	0.944 (.001)	0.951 (.001)	0.951 (.001)	0.946
Wage profile parameters	δ_0	8.922 (.009)	9.862 (.002)	8.680 (.006)	9.389 (.007)	9.197 (.007)	9.143 (.008)	9.211 (.008)
	δ_1	0.073 (.000)	0.111 (.000)	0.073 (.000)	0.063 (.000)	0.070	0.075 (.000)	0.074
	δ_2	-0.001 (.000)	-0.002 (.000)	-0.001 (.000)	-0.001 (.000)	-0.001	-0.001 (.000)	-0.001 (.000)
	δ_0^E	-0.487	-0.294	-0.450	-0.530	-0.480	-0.478	-0.505
	δ_1^E	0.020	0.032	0.018	0.021	0.018	0.020	0.021
Persistence of permanent shock	ρ	0.930	0.914	0.943	0.922	0.889	0.907	0.931
Std. deviation of permanent shock	σ_{ν}	0.236	0.076	0.196	0.268	0.288	0.275	0.246
Std. deviation of transitory shock	σ_ϵ	0.130	0.504	0.168	0.077	0.064	0.080	0.116
Std. deviation of individual FE	σ_i	0.599 (.003)	0.101 (.001)	0.541 (.003)	0.654 (.003)	0.625 (.003)	0.612 (.003)	0.632 (.003)
Learning-by-doing parameter Adjustment cost function Misperception of debt payoff	α	0 Fixed No	0 Fixed No	0 Fixed No	0 Fixed No	0.24 Fixed No	0 Linear No	0 Fixed Yes

Back: Estimation
 Additional

_

MODEL FIT: BUNCHING HETEROGENEITY

MODEL FIT: BUNCHING HETEROGENEITY

MODEL FIT: OTHER TARGET MOMENTS

Estimation Target	Data	Model
Average Labor Income	\$42,639	\$45,582
Cross-Sectional Variance of Log Labor Income at Age 22	0.453	0.462
Cross-Sectional Variance of Log Labor Income at Age 32	0.555	0.491
Cross-Sectional Variance of Log Labor Income at Age 42	0.577	0.525
Cross-Sectional Variance of Log Labor Income at Age 52	0.539	0.580
Cross-Sectional Variance of Log Labor Income at Age 62	0.608	0.657
Linear Age Profile Term	0.077	0.080
Quadratic Age Profile Term	-0.001	-0.001
Education Income Premium Constant	-0.574	-0.554
Education Income Premium Slope	0.023	0.023
10th Percentile of 1-Year Labor Income Growth	-0.387	-0.392
10th Percentile of 5-Year Labor Income Growth	-0.667	-0.705
90th Percentile of 1-Year Labor Income Growth	0.415	0.393
90th Percentile of 5-Year Labor Income Growth	0.698	0.710
Average Labor Supply	1.000	0.963
Average Capital Income between Ages 40 and 44	\$1,338	\$1,332

1 Robustness: $\hat{\phi} = 0.111$ with linear adjustment costs (vs. 0.114) **•**

2 Validation of baseline model on nontargeted moments

- **3** Bunching **decomposition**: $P(\text{Repayment}) \approx 60\%$, liquidity demands $\approx 40\%$ **O**
- 4 Learning-by-doing: cannot match heterogeneity in bunching by debt and age

VALIDATION OF BASELINE MODEL ON NONTARGETED BUNCHING

Bunching at Changes in Tax Rates

LEARNING-BY-DOING MODEL FITS WORSE THAN BASELINE MODEL

Baseline Model

Learning-by-Doing Model

DECOMPOSITION: RATE DIFFERENTIAL, REPAYMENT, AND LIQUIDITY

- Interest rate differential = $r \Rightarrow 0\%$ of bunching
- Probability of repayment = $p \Rightarrow 61\%$ of bunching
- Demand for liquidity \Rightarrow 39% of bunching (Chetty 2008, Ganong-Noel 2023, Indarte 2023)

SOLUTION TO CONSTRAINED-PLANNER'S PROBLEM: QUADRATIC

OPTIMAL VERSUS EXISTING INCOME-CONTINGENT LOANS

Change in Marginal Rate

Change in Average Rate

DISTRIBUTION OF INITIAL WELFARE GAINS: ICL

• Only 1.2% of borrowers have welfare loss above 0.5%

Heterogeneity by Initial States Losers Heterogeneity by Age

Back

DISTRIBUTION OF INITIAL WELFARE GAINS: ICL VS. EQUITY

• 18% of borrowers have welfare loss above 0.5% for equity vs. 1.2% for ICL

HETEROGENEITY IN WELFARE GAINS ACROSS INITIAL STATES

Heterogeneity by Age

Losers under ICL

Heterogeneity by Initial Debt

INDIVIDUALS WITH INITIAL WELFARE LOSSES: ICL

WELFARE GAINS BY AGE

ICL + 20-Year Forgiveness vs. ICL

CERTAINTY-EQUIVALENTS ACROSS INITIAL DEBT

FIT OF MODEL IN WHICH FIXED REPAYMENT IS OPTIMAL

BUNCHING WHEN FIXED REPAYMENT IS OPTIMAL VS. OCCUPATIONS

ALTERNATIVE CONTRACTS REDUCE WELFARE COST OF MORAL HAZARD

Alternative Forms of Income-Contingent Loans: $\phi = 0.37$

Reducing Welfare Cost of Moral Hazard: Baseline ϕ

Alternative Forms of Income-Contingent Loans: Baseline ϕ

ROBUSTNESS TO MODEL MISSPECIFICATION

	Difference from Baseline	Welfare Gain	= Insurance	+ Moral Hazard	ψ^*	<i>K</i> *
(1)	Fixed Cost Only	1.00%	1.49%	-0.49%	21%	\$22,711
(2)	Calvo Only	2.02%	2.10%	-0.08%	64%	\$46,452
(3)	Linear Adjustment Cost	1.74%	1.87%	-0.13%	53%	\$43,560
(4)	Occupation Heterogeneity	1.32%	1.45%	-0.13%	41%	\$28,694
(5)	Learning-by-Doing	1.68%			35%	\$36,615
(6)	Wealth Effects	0.82%	1.05%	-0.23%	37%	\$30,307
(7)	Less Persistence: $ ho = 0.8$	0.90%	1.14%	-0.23%	42%	\$34,244
(8)	More Persistence: $\rho = 0.99$	1.35%	1.63%	-0.28%	35%	\$18,949
(9)	Non-Normal Shocks	1.14%	1.43%	-0.30%	28%	\$26,933
(10)	Debt Interest Rate = 2%	1.96%	2.14%	-0.18%	38%	\$47,731
(11)	Discount Rate = R	1.06%	1.41%	-0.35%	29%	\$22,696
(12)	Discount Rate = $R + 4\%$	1.60%	1.65%	-0.05%	46%	\$34,441
(13)	US Tax System	1.18%	1.36%	-0.19%	38%	\$28,838
(14)	US Initial Debt Levels	3.50%	4.72%	-1.22%	36%	\$18,867
(15)	Riskless Borrowing: $ au_b = 0\%$	1.68%	1.82%	-0.15%	44%	\$39,809
(16)	No Ex-Post Uncertainty	0.58%	0.76%	-0.17%	27%	\$18,098
(17)	No Uncertainty	-0.17%	0.15%	-0.32%	21%	\$26,906
	Average	1.35%	1.64%	-0.28%	37%	\$30,939
	Baseline Model	1.32%	1.47%	-0.15%	33%	\$27,147

Back: Additional Results

ROBUSTNESS TO ALTERNATIVE MODELS OF FRICTIONS

	Difference from Baseline Model	Welfare Gain	= Insurance	+ Moral Hazard	ψ^*	K^*
(1)	<i>f</i> = 0	1.31%	1.61%	-0.3%	46%	\$29,618
(2)	f = \$2278	1.49%	1.65%	-0.16%	64%	\$33,915
(3)	$\lambda = 1$	1.27%	1.34%	-0.07%	38%	\$28,191
(4)	$\lambda = 0.147$	1.32%	1.47%	-0.15%	40%	\$28,492
(5)	Fixed Adjustment Cost Only	1.00%	1.49%	-0.49%	21%	\$22,711
(6)	Calvo Adjustment Only	2.02%	2.10%	-0.08%	64%	\$46,452
(7)	Linear Adjustment Cost	1.74%	1.87%	-0.13%	53%	\$43,560
	Baseline Model	1.32%	1.47%	-0.15%	33%	\$27,147

- Loss from moral hazard is larger when adjustment is more state-dependent
- Larger gains with linear adjustment costs: more insurance and less moral hazard

A Back: Fixed Point ϕ A Back: Additional Results

EFFECTS OF CHANGING RISK AVERSION AND EIS

• Back: Fixed Point ϕ • Back: Additional Results

ADDITIONAL MODEL RESULTS: NORMATIVE

Robustness to

- Different sources of model mispecification •
- Different adjustment frictions •
- Different values of RRA and EIS C
- 2 Pure equity contract does worse than income-contingent loan
- With optimal tax progressivity, forbearance is enough and gains are smaller •

PURE EQUITY DOES WORSE THAN INCOME-CONTINGENT LOAN

WELFARE GAINS WITH OPTIMAL TAX PROGRESSIVITY

Tim de Silva, Stanford

Physical vs. logical page numbers

- Windows: Ctrl + K, uncheck "Use Logical Page Numbers"
- Mac: Cmd + K, uncheck "Use Logical Page Numbers"
- Always toggle on/off closing window and then reopening

Jump to page numbers

- Windows: Ctrl + Shift + N
- Mac: Cmd + Shift + N